The drug resistance suppression induced by curcuminoids in colon cancer SW-480 cells is mediated by reactive oxygen species-induced disruption of the microRNA-27a-ZBTB10-Sp axis

2013 ◽  
Vol 57 (9) ◽  
pp. 1638-1648 ◽  
Author(s):  
Giuliana D. Noratto ◽  
Indira Jutooru ◽  
Stephen Safe ◽  
Gabriela Angel-Morales ◽  
Susanne U. Mertens-Talcott
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Hai Wang ◽  
Zan Gao ◽  
Xuanyou Liu ◽  
Pranay Agarwal ◽  
Shuting Zhao ◽  
...  

Author(s):  
Kwang-Youn Kim ◽  
Tae-Woo Oh ◽  
Hye-Jin Yang ◽  
Young-Woo Kim ◽  
Jin-Yeul Ma ◽  
...  

Abstract Background Recent research has suggested that autophagy can provide a better mechanism for inducing cell death than current therapeutic strategies. This study investigated the effects of using an ethanol extract of Chrysanthemum zawadskii Herbich (ECZ) to induce apoptosis and autophagy associated with reliable signal pathways in mouse colon cancer CT-26 cells. Methods Using ECZ on mouse colon cancer CT-26 cells, cell viability, annexin V/propidium iodide staining, acridine orange staining, reactive oxygen species (ROS) and western blotting were assayed. Results ECZ exhibited cytotoxicity in CT-26 cells in a dose-dependent manner. ECZ induced apoptosis was confirmed by caspase-3 activation, poly (ADP-ribose) polymerase cleavage, and increased production of reactive oxygen species (ROS). Furthermore, it was shown that ECZ induced autophagy via the increased conversion of microtubule-associated protein 1 light chain 3II, the degradation of p62, and the formation of acidic vesicular organelles. The inhibition of ROS production by N-Acetyl-L-cysteine resulted in reduced ECZ-induced apoptosis and autophagy. Furthermore, the inhibition of autophagy by 3-methyladenine resulted in enhanced ECZ-induced apoptosis via increased ROS generation. Conclusion These findings confirmed that ECZ induced ROS-mediated autophagy and apoptosis in colon cancer cells. Therefore, ECZ may serve as a novel potential chemotherapeutic candidate for colon cancer.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1672 ◽  
Author(s):  
Yuying Li ◽  
Fang Guo ◽  
Yingying Guan ◽  
Tinggui Chen ◽  
Kaiqing Ma ◽  
...  

A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 μg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.


2019 ◽  
Vol 97 (12) ◽  
pp. 1176-1184 ◽  
Author(s):  
Hassan Abbaszadeh ◽  
Armita Valizadeh ◽  
Masoud Mahdavinia ◽  
Ali Teimoori ◽  
Mohammad Hassan Pipelzadeh ◽  
...  

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising anticancer cytokine with minimal toxicity towards normal cells. Nevertheless, most primary cancers are often intrinsically TRAIL-resistant or can acquire resistance after TRAIL therapy. This study aimed to investigate the inhibitory effect of co-treatment of 3-bromopyruvate (3-BP) as a potent anticancer agent with TRAIL on colon cancer cells (HT-29). The results of present study indicated that combined treatment with 3-BP and TRAIL inhibited the proliferation of HT-29 cells to a greater extent (88.4%) compared with 3-BP (54%) or TRAIL (11%) treatment alone. In contrast, the combination of 3-BP and TRAIL had no significant inhibitory effect on the proliferation of normal cells (HEK-293) (8.4%). At a cellular mechanistic level, the present study showed that 3-BP sensitized human colon cancer cells to TRAIL-induced apoptosis via reactive oxygen species generation, upregulation of Bax, downregulation of Bcl-2 and survivin, release of cytochrome c into the cytosol, and activation of caspase-3. In normal cells, 3-BP, TRAIL, or combination of both had no significant effect on the reactive oxygen species levels, release of cytochrome c, and caspase-3 activity. Therefore, the combination of 3-BP and TRAIL can be a promising therapeutic strategy for treatment of colon cancer.


2016 ◽  
Vol 150 (4) ◽  
pp. S955
Author(s):  
Su Young Kim ◽  
Eun-Kyoung Kim ◽  
A Reum Jeong ◽  
Yoon Jae Kim ◽  
Eui Joo Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document