Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial

2015 ◽  
Vol 58 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Manoj Bhaskar ◽  
Esha Johari ◽  
Zubair Akhter ◽  
M. J. Akhtar
2012 ◽  
Vol 132 ◽  
pp. 463-478 ◽  
Author(s):  
Fan-Yi Meng ◽  
Yue-Long Li ◽  
Kuang Zhang ◽  
Qun Wu ◽  
Joshua Le-Wei Li

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5988
Author(s):  
Jungwoo Seo ◽  
Jae Hee Kim ◽  
Jungsuek Oh

A microstrip-to-slot line-fed miniaturized Vivaldi antenna using semicircular patch embedment is proposed in this study. The conventional Vivaldi antenna has ultrawide bandwidth, but suffers from low gain in the low-frequency band. The proposed antenna topology incorporates the embedment of semicircular patch elements into the side edge of the antenna. This enables the phases of electric fields at both ends of the antenna to be out of phase. Since the distance between the two ends are λL/2 where λL is the wavelength at a low operating frequency, this antenna topology can achieve the constructive addition of electrical fields at the radiating end, leading to gain enhancement at the chosen low frequency. In comparison with the conventional Vivaldi antenna, the proposed antenna has a wider bandwidth from 2.84 to 9.83 GHz. Moreover, the simulated result shows a gain enhancement of 5 dB at low frequency. This cannot be realized by the conventional low-band impedance matching techniques only relying on slotted topologies. The measured results of this proposed antenna with a size of 45 × 40 × 0.8 mm3 are in good agreement with the simulated results.


2017 ◽  
Vol 77 ◽  
pp. 69-80 ◽  
Author(s):  
Xiangxiang Li ◽  
Dong Wei Pang ◽  
Hai Lin Wang ◽  
Yanmei Zhang ◽  
Guoqiang Lv

The proposed vivaldi antenna for wearable applications is done using flexible material. The designed antenna has the length of 8 cm and width is 6 cm. For the gain enhancement, strip lines are added in the vivaldi. There are six strip lines and the length of the strip is varied. By adding the strip line, gain of the antenna is increased compared to without strip lines. It has high gain and directivity. Poly-Ethylene Terephthalate (PET) is used as a substrate for achieving the flexibility and it has high resist to moisture. It has board range of use temperature, -60 to 130°C. For every iteration, a strip line is added one by one upto six lines. The gain and directivity of the antenna is 5.4 dB for both the parameters.


Sign in / Sign up

Export Citation Format

Share Document