Wideband circular cavity‐backed slot antenna with conical radiation patterns

2020 ◽  
Vol 62 (6) ◽  
pp. 2390-2397 ◽  
Author(s):  
Arvind Kumar
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Tamer Aboufoul ◽  
Akram Alomainy ◽  
Clive Parini

A compact reconfigurable and notched ultra-wideband (UWB) tapered slot antenna (TSA) is presented. The antenna reconfiguration operation principle relies on 2 mechanisms: in the first mechanism a resonator parasitic microstrip line electrically coupled to the TSA is used to notch the TSA at a specific frequency and the second mechanism relies on changing the input impedance matching of the antenna by means of changing the length of a stub line extended from an additional tiny partial ground on the back side of the antenna. The reflection coefficient, radiation patterns, and gain simulations and measurements for the proposed antenna are presented to verify the design concepts featuring a very satisfactory performance. Total efficiency simulations and measurements are also presented to highlight the filtering performance of the reconfigured antenna. When the antenna was reconfigured from the UWB to work into multiple frequency bands, the radiation patterns were still the same and the total peak gain has slightly improved compared to the UWB case. In addition, when the antenna operated in the notched mode, the gain has significantly dropped at the notch frequency. The simplicity and flexibility of the proposed multimode antenna make it a good candidate for future cognitive radio front ends.


This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


2016 ◽  
Vol 9 (3) ◽  
pp. 649-656 ◽  
Author(s):  
Neng-Wu Liu ◽  
Lei Zhu ◽  
Wai-Wa Choi

A low-profile circularly polarized (CP) slot antenna to achieve a wide axial-ratio (AR) beamwidth is proposed in this paper. The radiating patch consists of two orthogonal pairs of parallel slots etched symmetrically onto a ground plane. Firstly, our theoretical study demonstrates that the CP radiation can be satisfactorily achieved at the broadside, when the vertical and horizontal paired-slots are excited in the same amplitude with 90° phase difference. Secondly, the principle of CP radiation of the proposed antenna on an infinite ground plane is described. Through analyzing the spacing between two parallel slots, the |Eθ| and |Eφ| radiation patterns can be made approximately identical with each other over a large angle range. As such, the slot antenna achieves a wide AR beamwidth. After that, the 3 dB AR beamwidth with respect to the size of a finite ground plane is investigated to constitute a practical CP antenna on a finite ground plane. In final, the proposed CP antenna with a 1–4 probe-to-microstrip feeding network is designed and fabricated on a finite ground plane of a dielectric substrate. Measured results are shown to be in good agreement with the simulated ones about the gain, reflection coefficient, AR bandwidth, and radiation patterns. Most importantly, a wide 3 dB AR beamwidth of 126° and low-profile property with the height of 0.036λ0 are achieved.


2007 ◽  
Vol 55 (11) ◽  
pp. 3348-3353 ◽  
Author(s):  
Shi-Wei Qu ◽  
Jia-Lin Li ◽  
Jian-Xin Chen ◽  
Quan Xue

2014 ◽  
Vol 644-650 ◽  
pp. 4455-4458 ◽  
Author(s):  
Li Zhu ◽  
Xiang Jun Gao ◽  
Long Zheng

In this paper, a novel coplanar waveguide (CPW)-fed and miniaturized slot antenna for triple-frequency operation is proposed and investigated, which is printed on a small 20mm×20mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.3. Through loading different slits, three perfect operating bands of 2.4GHz-2.45GHz, 3.25GHz-4.15GHz and 5.05GHz-6.25GHz are achieved respectively, when return loss is less than-10dB. Experimental results show that the antenna gives monopole-like radiation patterns and good antenna gains over the operating bands. Such antennas is suitable for WLAN 2.4/5.2/5.8 GHz and WiMAX 3.5/5.5 GHz applications.


Frequenz ◽  
2015 ◽  
Vol 69 (11-12) ◽  
Author(s):  
Xiaolin Yang ◽  
Lili Sheng ◽  
Jiancheng Lin ◽  
Gang Chen

AbstractThis paper introduces a frequency reconfigurable hybrid slot antenna fed by coplanar waveguide (CPW) without complex bias network and DC blocking capacitor chips. In order to add reconfigurablility to the antenna, the PIN diodes are equipped in the slots. The antenna is capable of frequency switching at six different frequency bands between 1.7 GHz to 2.5 GHz, which can be used in multiradio wireless systems, such as DCS-1800, PCS1900, UMTS, Wibro and Bluetooth bands. The simulated and measured return loss, peak gain, together with the radiation patterns are presented and compared. Especially, the radiation patterns are stable at different frequency.


Sign in / Sign up

Export Citation Format

Share Document