Optical imaging of lithium‐containing zinc sulfate plate in water during irradiation of neutrons from boron neutron capture therapy (BNCT) system

2021 ◽  
Author(s):  
Seiichi Yamamoto ◽  
Takuya Yabe ◽  
Naonori Hu ◽  
Yasukazu Kanai ◽  
Hiroki Tanaka ◽  
...  
2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii345-iii345
Author(s):  
Hsin-Hung Chen ◽  
Yi-Wei Chen

Abstract A 6 y/o girl with recurrent multifocal glioblastoma received 3 times of boron neutron capture therapy (BNCT) and chimeric antigen receptor (CAR)–engineered T cells targeting the tumor-associated antigen HER2. Multiple infusions of CAR T cells were administered over 30 days through intraventricular delivery routes. It was not associated with any toxic effects of grade 3 or higher. After BNCT and CAR T-cell treatment, regression of all existing intracranial lesions were observed, along with corresponding increases in levels of cytokines and immune cells in the cerebrospinal fluid, but new lesions recurred soon after the treatment. This clinical response continued for 14 months after the initiation of first recurrence.


2021 ◽  
Author(s):  
Jing He ◽  
Heng Yan ◽  
Yanrong Du ◽  
Yan Ji ◽  
Fei Cai ◽  
...  

A reliable copper-mediated nucleophilic radiosynthesis of the BNCT-oriented PET probe [18F]FBPA was developed using novel aryldiboron precursors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Torres-Sánchez ◽  
Ignacio Porras ◽  
Nataliya Ramos-Chernenko ◽  
Fernando Arias de Saavedra ◽  
Javier Praena

AbstractBoron Neutron Capture Therapy (BNCT) is facing a new era where different projects based on accelerators instead of reactors are under development. The new facilities can be placed at hospitals and will increase the number of clinical trials. The therapeutic effect of BNCT can be improved if a optimized epithermal neutron spectrum is obtained, for which the beam shape assembly is a key ingredient. In this paper we propose an optimal beam shaping assembly suited for an affordable low energy accelerator. The beam obtained with the device proposed accomplishes all the IAEA recommendations for proton energies between 2.0 and 2.1 MeV. In addition, there is an overall improvement of the figures of merit with respect to BNCT facilities and previous proposals of new accelerator-based facilities.


2009 ◽  
Vol 11 (4) ◽  
pp. 430-436 ◽  
Author(s):  
Shin-Ichi Miyatake ◽  
Shinji Kawabata ◽  
Naosuke Nonoguchi ◽  
Kunio Yokoyama ◽  
Toshihiko Kuroiwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document