Development of a deep learning‐based patient‐specific target contour prediction model for markerless tumor positioning

2022 ◽  
Author(s):  
Dejun Zhou ◽  
Mitsuhiro Nakamura ◽  
Nobutaka Mukumoto ◽  
Michio Yoshimura ◽  
Takashi Mizowaki
2018 ◽  
Vol 45 (9) ◽  
pp. 4055-4065 ◽  
Author(s):  
Seiji Tomori ◽  
Noriyuki Kadoya ◽  
Yoshiki Takayama ◽  
Tomohiro Kajikawa ◽  
Katsumi Shima ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marion R. Munk ◽  
Thomas Kurmann ◽  
Pablo Márquez-Neila ◽  
Martin S. Zinkernagel ◽  
Sebastian Wolf ◽  
...  

AbstractIn this paper we analyse the performance of machine learning methods in predicting patient information such as age or sex solely from retinal imaging modalities in a heterogeneous clinical population. Our dataset consists of N = 135,667 fundus images and N = 85,536 volumetric OCT scans. Deep learning models were trained to predict the patient’s age and sex from fundus images, OCT cross sections and OCT volumes. For sex prediction, a ROC AUC of 0.80 was achieved for fundus images, 0.84 for OCT cross sections and 0.90 for OCT volumes. Age prediction mean absolute errors of 6.328 years for fundus, 5.625 years for OCT cross sections and 4.541 for OCT volumes were observed. We assess the performance of OCT scans containing different biomarkers and note a peak performance of AUC = 0.88 for OCT cross sections and 0.95 for volumes when there is no pathology on scans. Performance drops in case of drusen, fibrovascular pigment epitheliuum detachment and geographic atrophy present. We conclude that deep learning based methods are capable of classifying the patient’s sex and age from color fundus photography and OCT for a broad spectrum of patients irrespective of underlying disease or image quality. Non-random sex prediction using fundus images seems only possible if the eye fovea and optic disc are visible.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gaoyang Li ◽  
Haoran Wang ◽  
Mingzi Zhang ◽  
Simon Tupin ◽  
Aike Qiao ◽  
...  

AbstractThe clinical treatment planning of coronary heart disease requires hemodynamic parameters to provide proper guidance. Computational fluid dynamics (CFD) is gradually used in the simulation of cardiovascular hemodynamics. However, for the patient-specific model, the complex operation and high computational cost of CFD hinder its clinical application. To deal with these problems, we develop cardiovascular hemodynamic point datasets and a dual sampling channel deep learning network, which can analyze and reproduce the relationship between the cardiovascular geometry and internal hemodynamics. The statistical analysis shows that the hemodynamic prediction results of deep learning are in agreement with the conventional CFD method, but the calculation time is reduced 600-fold. In terms of over 2 million nodes, prediction accuracy of around 90%, computational efficiency to predict cardiovascular hemodynamics within 1 second, and universality for evaluating complex arterial system, our deep learning method can meet the needs of most situations.


Sign in / Sign up

Export Citation Format

Share Document