Improvements in lipid suppression for 1 H NMR-based metabolomics: Applications to solution-state and HR-MAS NMR in natural and in vivo samples

2019 ◽  
Vol 57 (2-3) ◽  
pp. 69-81 ◽  
Author(s):  
Qusai Hassan ◽  
Rudraksha Dutta Majumdar ◽  
Bing Wu ◽  
Daniel Lane ◽  
Maryam Tabatabaei-Anraki ◽  
...  
Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Annakatrin Häni ◽  
Gaëlle Diserens ◽  
Anna Oevermann ◽  
Peter Vermathen ◽  
Christina Precht

The metabolic profiling of tissue biopsies using high-resolution–magic angle spinning (HR-MAS) 1H nuclear magnetic resonance (NMR) spectroscopy may be influenced by experimental factors such as the sampling method. Therefore, we compared the effects of two different sampling methods on the metabolome of brain tissue obtained from the brainstem and thalamus of healthy goats by 1H HR-MAS NMR spectroscopy—in vivo-harvested biopsy by a minimally invasive stereotactic approach compared with postmortem-harvested sample by dissection with a scalpel. Lactate and creatine were elevated, and choline-containing compounds were altered in the postmortem compared to the in vivo-harvested samples, demonstrating rapid changes most likely due to sample ischemia. In addition, in the brainstem samples acetate and inositols, and in the thalamus samples ƴ-aminobutyric acid, were relatively increased postmortem, demonstrating regional differences in tissue degradation. In conclusion, in vivo-harvested brain biopsies show different metabolic alterations compared to postmortem-harvested samples, reflecting less tissue degradation. Sampling method and brain region should be taken into account in the analysis of metabolic profiles. To be as close as possible to the actual situation in the living individual, it is desirable to use brain samples obtained by stereotactic biopsy whenever possible.


1993 ◽  
Vol 73 (4) ◽  
pp. 953-965 ◽  
Author(s):  
A. Lirette ◽  
Z. Liu ◽  
D. C. Crober ◽  
R. A. Towner ◽  
U. M. Oehler ◽  
...  

Nuclear magnetic resonance (NMR) imaging and spectroscopy techniques were used to observe in vivo anatomical and metabolite changes, respectively, in developing chicken embryos. Proton (1H) NMR images of the eggs revealed major changes in yolk shape from day 2 to day 6. Embryos were visible from day 6 to hatching, and good embryonic anatomical images were obtained. Two peaks were observed from 1H-NMR spectroscopy of fertilized eggs: one for lipid methylene protons, and one for water protons. Water peak to lipid peak ratios did not vary significantly (P > 0.05) from day 2 to day 21 of incubation. Localized 31P-NMR spectra of developing embryos were obtained with either a 31P surface coil or a double-tuned 31P/1H volume coil. The surface-coil method gave a greater signal to noise ratio by a factor of four. The 31P-NMR spectra indicated two peaks at day 2; these were attributed to phosphomonoesters and phosphodiesters. The three peaks characteristic of ATP appeared on day 11 and increased in size until hatching. From day 19, phosphocreatine was detectable. There appeared to be a good correlation between 31P-metabolite changes detected by in vivo 31P-NMR spectroscopy and literature values for biochemical analyses of developing chicken embryos. The advantage in using NMR imaging and spectroscopy techniques is that anatomical and metabolic changes can be obtained in vivo, non-invasively and repeatedly as an embryo develops. Key words: NMR, MRI, embryo, poultry


2005 ◽  
Vol 54 (3) ◽  
pp. 691-696 ◽  
Author(s):  
Mari A. Smith ◽  
Joseph Gillen ◽  
Michael T. McMahon ◽  
Peter B. Barker ◽  
Xavier Golay

2021 ◽  
pp. 174751982110664
Author(s):  
Jue Chen ◽  
Tengmei Gao ◽  
Yinxia Chang ◽  
Yanming Wei ◽  
Yonghui Wang

Folate (FA) plays a key role in the biosynthesis of amino acids, purines, and pyrimidines in the human body, and intracellular folate metabolism has become an attractive target of tumor chemotherapy. In this work, an inclusion interaction was found between FA and cucurbit[7]uril (CB[7]), and the formation of a CB[7]-FA 2:1 supramolecular inclusion complex was confirmed by fluorescence spectra, UV-Vis absorption spectroscopy, 1H NMR, and molecular modeling calculations. In addition, FA is generally determined through the indirect fluorescent method because it shows weak fluorescence in aqueous solution. Therefore, a simple, direct fluorescence probe method for rapidly measuring FA was investigated, and the linear equation of FA was ΔF = 14.691C + 37.366 within the concentration ranges of 0.82 ~ 18.31 µg mL–1. The proposed direct fluorescence method was applied to the determination of spiked plasma. We demonstrated that this method could provide an experimental basis for the targeted administration of the CB[7]-FA complex, and it could be extended as a promising fluorescence detection method for drugs in vivo.


1997 ◽  
Vol 52 (1-2) ◽  
pp. 49-54 ◽  
Author(s):  
Daniel N. Kushev ◽  
Nadejda C. Spassovska ◽  
Svetoslav I. Taxirov ◽  
Konstantin C. Grancharov

AbstractNew platinum(II) complexes of cyclohexanecarboxylic acid hydrazide (chcah) were synthesized and characterized by elemental analysis, IR. and 1H NMR spectra. Their inhibitory effects on cell growth and macromolecular synthesis of Friend leukemia cells in culture as well as the in vivo antitumor activity towards L1210 leukemia in mice were compared with those of complexes containing differently substituted aromatic acid hydrazides. Some of the complexes exhibited antineoplastic activity. No correlation between the in vitro cytotoxicity and the in vivo antitumor activity was found. However, there was a relationship between the in vitro macromolecular synthesis inhibition profile and the in vivo antineoplastic effect, similar to that of cisplatin. On the other hand, only agents containing one ammine ligand were active in vivo. The substitution of the aromatic ring by a cycloalkane residue increased significantly the antitumor effect, with [Pt(NH3)(chcah)Cl2] being the most active compound in this study.


1996 ◽  
Vol 51 (3-4) ◽  
pp. 185-194 ◽  
Author(s):  
Verena Scheumann ◽  
Michael Helfrich ◽  
Siegrid Schoch ◽  
Wolfhart Rüdiger

Abstract The chemical reduction of the formyl group of pheophorbide b with sodium cyanoborohy­ dride in methanol leads to 71-methoxy-and 71-hydroxy-pheophorbide a. The same reaction with zinc pheophorbide b yields in addition zinc pheophorbide a. This was characterized by mass and 1H -NMR spectroscopy. Infiltration of zinc pheophorbides a and b and of zinc 71-hydroxy-pheophorbide a into etiolated oat leaves yielded phytylated products. The best yield in the esterification was obtained with 71-hydroxy-pheophorbide a. Analysis of the products revealed the formation of zinc pheophytin a from all infiltrated compounds. The significance for the transformation of chlorophyll b into chlorophyll a is discussed.


2007 ◽  
Vol 62 (11-12) ◽  
pp. 839-848 ◽  
Author(s):  
Ewa Skała ◽  
Danuta Kalemba ◽  
Anna Wajs ◽  
Marek Róźalski ◽  
Urszula Krajewska ◽  
...  

The procedure of Salvia przewalskii shoot multiplication and the ability of regenerated plants to produce essential oil is reported. The essential oil was obtained by hydrodistillation from leaves and flowering stems of field-grown plants, and their chemical composition was examined by GC, GC-MS and 1H NMR. The differences in yield as well as qualitative and quantitative composition between the oils isolated from in vitro and in vivo plants were observed. S. przewalskii essential oil was tested for its antimicrobial and cytotoxic properties. It was found that cytotoxicity against human leukemia HL-60 cells and antimicrobial activity (especially, against Staphylococcus aureus and S. epidermidis strains) of oils isolated from in vitro plants were higher than those for oils from in vivo S. przewalskii plants.


1999 ◽  
Vol 380 (11) ◽  
pp. 1287-1294 ◽  
Author(s):  
Daniel Kushev ◽  
Galina Gorneva ◽  
Svetoslav Taxirov ◽  
Nadejda Spassovska ◽  
Konstantin Grancharov

Abstract New platinum(II) complexes of cyclopentanecarboxylic acid hydrazide (cpcah) were prepared, characterized by elemental analysis, IR and 1H NMR spectra, and evaluated for in vitro cytotoxicity in Friend leukemia (FL) and A2780 ovarian tumor cells, induction of apoptosis in FL cells, as well as for in vivo antitumor activity toward murine L1210 leukemia and Lewis lung carcinoma. The spectral analyses indicated a cissquare planar structure of the complexes with hydrazide ligand coordinated via the NH2 group. The compounds exerted significantly lower in vitro and in vivo toxicities as compared with those of cisplatin (cis-diamminedichloroplatinum(II), DDP). On the other hand, the complex [Pt(NH3)(cpcah)Cl2] exhibited antitumor activity against L1210 leukemia in mice comparable to that of cisplatin, resulting at a dose of 42 mg/kg (administered 3 times) in a T/C (mean survival time) of 280%. This compound displayed an in vitro macromolecular synthesis inhibition pattern similar to that of DDP. At concentrations close to the cytostatic ones (10–20 μM) this complex, as well as DDP, was able to induce apoptosis in FL cells as shown by neutral comet assay and morphological analysis. We concluded that there is a correlation between the ability of platinum complexes to induce apoptosis and their antitumor activity.


2017 ◽  
Vol 12 (3) ◽  
pp. 319 ◽  
Author(s):  
Mubeen Arif ◽  
Furukh Jabeen ◽  
Aamer Saeed ◽  
Irfan Zia Qureshi ◽  
Nadia Mushtaq

<p class="Abstract">Two new pharmacologically active series of tetrazolopyridine-acetohydrazide conjugates [9 (a-n), 10 (a-n)] were synthesized by reacting a variety of suitably substituted benzaldehydes and isomeric 2-(5-(pyridin-3/4-yl)-2H-tetrazol-2-yl)acetohydrazides (7, 8). The synthesized compounds were analyzed through FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR and elemental techniques. These acetohydrazides were screened for their in vivo antidiabetic activity and molecular docking studies. An excellent agreement was obtained as the best docked poses show-ed important binding features mostly based on interactions due to an oxygen atom and aromatic moieties of the series. The compounds 9a, 9c and 10l were found to be the most active in lowering blood glucose, having the potential of being good antidiabetic agents.</p><p><strong>Video Clip of Methodology</strong>:</p><p>Synthesis of 3/4-(2H-tetrazole-5-yl)pyridine: 1 min 57 sec   <a href="https://www.youtube.com/v/CHp8HxlEa2M">Full Screen</a>   <a href="https://www.youtube.com/watch?v=CHp8HxlEa2M">Alternate</a></p>


1985 ◽  
Vol 5 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Hiroyuki Kato ◽  
Kyuya Kogure ◽  
Hitoshi Ohtomo ◽  
Muneshige Tobita ◽  
Shigeru Matsui ◽  
...  

Evaluation of ischemic brain injury in experimental cerebral infarction in gerbils and rats was performed by means of both proton nuclear magnetic resonance imaging ([1H]NMR-CT) and various histochemical analyses. In vivo nuclear magnetic resonance (NMR) imaging was carried out employing saturation recovery, inversion recovery, and spin echo pulse sequences. Spatial resolution of the images was excellent. The ischemic lesions were detected with a remarkable contrast in inversion recovery and spin echo images within a few hours after insult. Those changes in NMR images consistently corresponded with the various retrospective histochemical observations, especially with methods related to brain edema (K+ staining) rather than structural (enzymatic) studies. Calculated T1 and T2 relaxation times indicated the evolution of the edema state in the brain in situ. They correlated excellently with the retrospective water content measurement. As a result, detailed characterization of the edema state induced by cerebral ischemia was possible in vivo using [1H]NMR imaging.


Sign in / Sign up

Export Citation Format

Share Document