scholarly journals Simplified modeling of electromagnets for dynamic simulation of transient effects for a synchronous electric motor

Author(s):  
Florian Bechler ◽  
Julius Kesten ◽  
Florian Wittemann ◽  
Frank Henning ◽  
Martin Doppelbauer ◽  
...  
2020 ◽  
Vol 10 (16) ◽  
pp. 5467
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
Kuohsiu David Huang

To avoid unnecessary power loss during switching between the various power sources of a composite electric vehicle while achieving smooth operation, this study focuses on the development and dynamic simulation analysis of a control system for the power of a parallel composite vehicle. This system includes a power integration and distribution mechanism, which enables the two power sources of the internal combustion engine and electric motor to operate independently or in coordination to meet the different power-output requirements. The integration of the electric motor and battery-charging engine reduces the system complexity. To verify the working efficiency of the energy control strategy for the power system, the NEDC2000 cycle is used for the vehicle driving test, a fuzzy logic controller is established using Matlab/Simulink, and the speed and torque analysis of the components related to power system performance are conducted. Through a dynamic simulation, it is revealed that this fuzzy logic controller can adjust the two power sources (the motor and internal combustion engine) appropriately. The internal combustion engine can be maintained in the optimal operating region with low, medium, and high driving speeds.


Author(s):  
G. J. O. Rodrigues ◽  
Daniel C. T. Cardoso ◽  
Beatriz S. L. P. de Lima ◽  
Breno P. Jacob ◽  
Antonio C. Fernandes

In deep and ultra-deep water petroleum exploitation activities, floating production systems such as semi submersible platforms and FPSO (Floating Production, Storage and Offloading) units have been commonly employed. However, the utilization of flexible risers in ultra-deep waters has been hindered by technical and economical reasons. On the other hand, first order motions from the floating unit due to environmental loads are not favorable to the use of Steel Catenary Risers (SCR) in a free-hanging configuration. This fact has motivated several studies on hybrid riser systems, including the system studied in this work, which is based on a sub-surface buoy with large dimensions, moored to the seabed by tethers. This system employs flexible lines connecting the floating unit to the buoy, in the region where dynamic effects are more relevant due to the floating unit motions, and also SCRs that extend from the buoy to the seabed, in the region where dynamic motions are not so significant. The objective of this work is to describe a solution procedure for the analysis of such a hybrid riser system. This procedure is based on an analytical formulation that is solved numerically. One of the main features of this procedure is the fact that it takes into account the effects of current loads acting on the lines. Current profiles can be considered, with direction and velocities varying with depth, therefore configuring a full three-dimensional solution. This procedure can be employed either as a preliminary static analysis tool, to be used in parametric studies in order to assess the feasibility of candidate configurations of hybrid riser systems, or else for the generation of finite-element meshes for a full time-domain nonlinear dynamic simulation. It is important to start the dynamic simulation from a statically balanced configuration, since the transient effects can be dramatically shortened and the total simulation time can be reduced. The results obtained from this procedure are compared with a discrete solution obtained using a nonlinear finite-element based solver. The strategy considered here is intended to be an approach that will speed up the tasks involved in the design of hybrid risers systems based on the subsurface buoy concept.


Author(s):  
Rainer Kurz ◽  
Sean Garceau ◽  
Min Ji ◽  
Klaus Brun

Abstract The emergency shutdown of a compressor train is a necessary safety feature. In this event, the power supply (either from a gas turbine or an electric motor) is cut off. The compressor train will continue to spin due to its inertia, but the speed will reduce fast. To avoid damage of the equipment during a shutdown event, compressor surge must to be avoided. In many instances, the dynamic behavior of the compression system is simulated to ensure that the necessary recycle valves are sized, and arranged properly. One of the key problems of dynamic simulation, and a major source of uncertainty in the results, is the correct treatment of the speed decay of the compressor train. The present study provides the background to evaluate the speed decay, and includes data from actual rundown situations. The evaluation shows general trends, that can be used to reduce the simulation uncertainties in dynamic simulations.


1891 ◽  
Vol 31 (783supp) ◽  
pp. 12510-12511
Author(s):  
George M. Hopkins
Keyword(s):  

1913 ◽  
Vol 108 (1) ◽  
pp. 11-11
Author(s):  
H. B. Dailey
Keyword(s):  

1981 ◽  
Vol 42 (C4) ◽  
pp. C4-579-C4-582
Author(s):  
T. Shiraishi ◽  
D. Adler

Sign in / Sign up

Export Citation Format

Share Document