Compressor Speed Decay During Emergency Shutdowns

Author(s):  
Rainer Kurz ◽  
Sean Garceau ◽  
Min Ji ◽  
Klaus Brun

Abstract The emergency shutdown of a compressor train is a necessary safety feature. In this event, the power supply (either from a gas turbine or an electric motor) is cut off. The compressor train will continue to spin due to its inertia, but the speed will reduce fast. To avoid damage of the equipment during a shutdown event, compressor surge must to be avoided. In many instances, the dynamic behavior of the compression system is simulated to ensure that the necessary recycle valves are sized, and arranged properly. One of the key problems of dynamic simulation, and a major source of uncertainty in the results, is the correct treatment of the speed decay of the compressor train. The present study provides the background to evaluate the speed decay, and includes data from actual rundown situations. The evaluation shows general trends, that can be used to reduce the simulation uncertainties in dynamic simulations.

Author(s):  
Seyed M. Ghoreyshi ◽  
Meinhard T. Schobeiri

Abstract The paper investigates the dynamic behavior of an Ultra-High Efficiency Gas Turbine Engine (UHEGT) with Stator Internal Combustion. The UHEGT-technology was introduced for the first time to the gas turbine design community at the Turbo Expo 2015. In developing the UHEGT-technology, the combustion process is no longer contained in isolation between the compressor and turbine, rather distributed in the first three HP-turbine stator rows. Noticeable improvement in the engine thermal efficiency and power along with other performance advantages are brought by this technology. In the current paper, a dynamic simulation is performed on the entire gas turbine engine (UHEGT) using the nonlinear dynamic simulation code GETRAN. The simulations are in 2D (space-time) and include the majority of the engine components including rotor shaft, turbine and compressor, fuel injectors, diffuser, pipes, valves, controllers, etc. The thermo-fluid conservation laws are applied to the flow in each component which create a system of nonlinear partial differential equations that is solved numerically. Two different fuel schedules (steep rise and Gaussian) are applied to all injectors and the engine response is studied in each case. The results show that fluctuations in the fuel flow lead to fluctuations in most of the system parameters such as temperatures, power, shaft speed, etc. However, the shapes and amplitudes of the fluctuations are different and there is a time lag in the response profiles relative to the fuel schedules. It is shown that an increase in average fuel flow in the system leads to a small drop in efficiency due to the cycle change from the design point. Moreover, it is seen that the temperatures usually rise fast with increase of fuel flow, but the system tends to cool down with a slower rate as the fuel is reduced.


Author(s):  
Seyed M Ghoreyshi ◽  
Meinhard T Schobeiri

This paper investigates the dynamic behavior of an Ultra-High Efficiency Gas Turbine Engine (UHEGT) with Stator Internal Combustion. The UHEGT-technology was introduced for the first time to the gas turbine design community at the Turbo Expo 2015. In developing the UHEGT-technology, the combustion process is no longer contained in isolation between the compressor and turbine, rather distributed in the first three HP-turbine stator rows. Noticeable improvement in the engine thermal efficiency and power along with other performance advantages are brought by this technology. In the current paper, dynamic simulation is performed on the entire gas turbine engine (UHEGT) using the nonlinear dynamic simulation code GETRAN. The simulations are in 2 D (space-time) and include the majority of the engine components including rotor shaft, turbine and compressor, fuel injectors, diffuser, pipes, valves, controllers, etc. The thermo-fluid conservation laws are applied to the flow in each component which create a system of nonlinear partial differential equations that is solved numerically. Two different fuel schedules (steep rise and Gaussian) are applied to all injectors and the engine response is studied in each case. The results show that fluctuations in the fuel flow lead to fluctuations in most of the system parameters such as temperatures, power, shaft speed, etc. However, the shapes and amplitudes of the fluctuations are different and there is a time lag in the response profiles relative to the fuel schedules. It is shown that an increase in average fuel flow in the system leads to a small drop in efficiency due to the cycle change from the design point. Moreover, it is seen that the temperatures usually rise fast with increase of fuel flow, but the system tends to cool down at a slower rate as the fuel is reduced.


1939 ◽  
Vol 141 (1) ◽  
pp. 197-222 ◽  
Author(s):  
Adolf Meyer

By “combustion gas turbine” is meant a turbine actuated by the steady flow of the products of a continuous combustion under pressure in a combustion chamber. Inventors appear to have been at work on the gas turbine since 1791, the original attractions of the proposal being its simplicity and the elimination of the reciprocating motion of the early steam engines. Simplicity remains the principal advantage of the gas turbine, though the first applications have been made possible by the needs of special chemical processes, such as the Houdry cracking process. The efficiency attainable under present conditions is 17–18 per cent, but this would be increased to 23 per cent if the gas inlet temperature could be raised from 1,000 to 1,300 deg. F. The proposed new fields of application of the gas turbine include locomotive and marine propulsion, blast furnace plants, and the power supply for wind tunnels.


2020 ◽  
Vol 91 (11) ◽  
pp. 673-680
Author(s):  
A. B. Petrochenkov ◽  
A. V. Romodin ◽  
D. Yu. Leizgold ◽  
A. S. Semenov

2020 ◽  
Vol 10 (16) ◽  
pp. 5467
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
Kuohsiu David Huang

To avoid unnecessary power loss during switching between the various power sources of a composite electric vehicle while achieving smooth operation, this study focuses on the development and dynamic simulation analysis of a control system for the power of a parallel composite vehicle. This system includes a power integration and distribution mechanism, which enables the two power sources of the internal combustion engine and electric motor to operate independently or in coordination to meet the different power-output requirements. The integration of the electric motor and battery-charging engine reduces the system complexity. To verify the working efficiency of the energy control strategy for the power system, the NEDC2000 cycle is used for the vehicle driving test, a fuzzy logic controller is established using Matlab/Simulink, and the speed and torque analysis of the components related to power system performance are conducted. Through a dynamic simulation, it is revealed that this fuzzy logic controller can adjust the two power sources (the motor and internal combustion engine) appropriately. The internal combustion engine can be maintained in the optimal operating region with low, medium, and high driving speeds.


Author(s):  
Keishaly Cabrera Cruz ◽  
Paolo Pezzini ◽  
Lawrence Shadle ◽  
Kenneth M. Bryden

Abstract Compressor dynamics were studied in a gas turbine – fuel cell hybrid power system having a larger compressor volume than traditionally found in gas turbine systems. This larger compressor volume adversely affects the surge margin of the gas turbine. Industrial acoustic sensors were placed near the compressor to identify when the equipment was getting close to the surge line. Fast Fourier transform (FFT) mathematical analysis was used to obtain spectra representing the probability density across the frequency range (0–5000 Hz). Comparison between FFT spectra for nominal and transient operations revealed that higher amplitude spikes were observed during incipient stall at three different frequencies, 900, 1020, and 1800 Hz. These frequencies were compared to the natural frequencies of the equipment and the frequency for the rotating turbomachinery to identify more general nature of the acoustic signal typical of the onset of compressor surge. The primary goal of this acoustic analysis was to establish an online methodology to monitor compressor stability that can be anticipated and avoided.


2012 ◽  
Vol 197 ◽  
pp. 179-184
Author(s):  
Li Xing Sun ◽  
Ge Qun Shu

In the multibody dynamics analysis for motor vehicle, engine excitation, as a major excitation affecting the dynamic behavior of motorcycle frame, should be discussed. In this paper, a real-sized virtual engine model is established to replace lumped mass sphere ever discussed in dynamic simulation of vehicle, on which elaborate dynamic simulation of the valve train in engine is conducted at working condition to investigate the dynamic response of frame. The vertical acceleration response of the frame is achieved by using solution formulations set in professional program, and the comparison is discussed between different simulation results of frame dynamic behavior with or without engine excitation to determine the significance of dynamic simulation with considering the interaction between excitation and mechanism which is then utilized to discuss the vibration and smoothness performance of whole mechanical system.


2002 ◽  
Vol 128 (3) ◽  
pp. 506-517 ◽  
Author(s):  
S. M. Camporeale ◽  
B. Fortunato ◽  
M. Mastrovito

A high-fidelity real-time simulation code based on a lumped, nonlinear representation of gas turbine components is presented. The code is a general-purpose simulation software environment useful for setting up and testing control equipments. The mathematical model and the numerical procedure are specially developed in order to efficiently solve the set of algebraic and ordinary differential equations that describe the dynamic behavior of gas turbine engines. For high-fidelity purposes, the mathematical model takes into account the actual composition of the working gases and the variation of the specific heats with the temperature, including a stage-by-stage model of the air-cooled expansion. The paper presents the model and the adopted solver procedure. The code, developed in Matlab-Simulink using an object-oriented approach, is flexible and can be easily adapted to any kind of plant configuration. Simulation tests of the transients after load rejection have been carried out for a single-shaft heavy-duty gas turbine and a double-shaft aero-derivative industrial engine. Time plots of the main variables that describe the gas turbine dynamic behavior are shown and the results regarding the computational time per time step are discussed.


Sign in / Sign up

Export Citation Format

Share Document