Effects of confining‐pressure dependent Lame moduli on the frequency‐dependent amplification of a poro‐viscoelastic soil layer under horizontal cyclic loading

Author(s):  
Kyohei Ueda
2020 ◽  
Vol 44 (9) ◽  
pp. 1336-1349
Author(s):  
Weiyun Chen ◽  
Yumin Mou ◽  
Lingyu Xu ◽  
Zhihua Wang ◽  
Junhui Luo

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zuliang Zhong ◽  
Hong Zou ◽  
Xiangxiang Hu ◽  
Xinrong Liu

Due to the thick soil layer, short backfill time, and low degree of consolidation of the soil-rock mixture backfill in Chongqing city, metro train tunnels passing through this type of strata are prone to large settlements during operation, which greatly affects the stability of the tunnel and the safety of metro train operations. In response to this problem, the dynamic triaxial test of the soil-rock mixture backfill under cyclic loading was carried out to study the dynamic characteristics of the soil-rock mixture backfill under cyclic loading. The effect of initial consolidation degree, effective consolidation confining pressure, and rock content on the stiffness softening of soil-rock mixture backfill was analyzed. The results show that the initial consolidation degree, effective consolidation confining pressure, and rock content are all important factors affecting the stiffness of soil-rock mixture backfill under cyclic loading. As the number of cycles increases, the lower the initial consolidation degree and effective consolidation confining pressure, the faster the attenuation of the softening index, and the larger the amplitude. As the rock content increases, the softening index increases and the stiffness of the backfill changes from softening to hardening. Based on the test data, the softening-hardening model of the soil-rock mixture is established, which is in good agreement with the field test results. This study can provide a reference for predicting and controlling the postconstruction settlement of the metro tunnel in the soil-rock mixture backfill.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Huiqiang Duan ◽  
Depeng Ma

The damage and failure state of the loaded coal and rock masses is indirectly reflected by its acoustic emission (AE) characteristics. Therefore, it is of great significance to study the AE evolution of loaded coal and rock masses for the evaluation of damage degree and prediction of collapse. The paper mainly represents a numerical simulation investigation of the AE characteristics of coal specimen subjected to cyclic loading under three confining pressures, loading-unloading rates, and valley stresses. From the numerical simulation tests, the following conclusions can be drawn: (1) The final cycle number of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure, followed the valley stress. With the increase in confining pressure or valley stress, the cycle number tends to increase. However, the loading-unloading rate has a little influence on it. (2) The AE counts of coal specimen subjected to cyclic loading are greatly influenced by the confining pressure and the valley stress. With the increase in the confining pressure, the cumulative AE counts at the 1st cycle tend to increase but decrease at a cycle before failure; with the decrease in the valley stress, the cumulative AE counts per cycle increase in the relatively quiet phase. However, the loading-unloading rate has a little influence on it. (3) The failure mode of coal specimen subjected to cyclic loading is significantly influenced by the confining pressure. Under the uniaxial stress state, there is an inclined main fractured plane in the coal specimen, under the confining pressures of 5 and 10 MPa, the coal specimen represents dispersion failure. The loading-unloading rate and valley stress have little influence on it. (4) The AE ratio is proposed, and its evolution can better reflect the different stages of coal specimen failure under cyclic loading. (5) The influence of confining pressure on the broken degree of coal specimen subjected to cyclic loading is analyzed, and the higher the confining pressure, the more broken the failed coal specimen.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shuren Wang ◽  
Jiyun Zhang ◽  
Zhichao Li ◽  
Yongqiang Yu

It is very important to determine the seepage behaviour of fractured rock mass infilling to evaluate the stability of the surrounding rock. The joint transfixion rate is the ratio of the unpenetrated length to the penetration length of a joint in a sample. Samples of the fractured rock mass infilling using different transfixion rates were prepared, and a TCQT-III low-permeability coal-rock triaxial seepage device was used to conduct three cycles of confining pressure-seepage coupling tests. Results show that the permeability is a power function in the confining pressure of the sample, and the permeability changes most significantly with the confining pressures. The permeability of the sample increases exponentially with the joint transfixion rate. The permeability loss is positively correlated with the plastic deformation of the sample; the permeability changes most significantly during the first cycle loading. There is over 60% recovery of the permeability of the sample under cyclic loading for loads that do not exceed the strength of the infilling. The stress sensitivity coefficient decreases as the confining pressure increases and is higher during the unloading stage than that during the loading stage for samples with an incomplete transfixion rate. The conclusions obtained in this study can serve as a reference for grouting applications.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Liu Xianshan ◽  
Li Man ◽  
Xu Ming ◽  
Kang Zhiyong

The hydrated shales under cyclic loading and unloading conditions are common for the shale reservoir development; corresponding mechanical properties and permeability evolution are very significant and should be deeply researched. Firstly, the experiments of the hydrated shales under the above conditions are discussed, showing that the peak strength is lower and corresponding permeability is higher for more days of hydrating treatment. Secondly, the damage theory is proposed to analyze the shale permeability evolution due to hydromechanical damage and get permeability variation under initial loading and unloading conditions, observing that the permeability in the loading process decreases with increasing confining pressure and increases in the unloading process with decreasing confining pressure; however, the former changes much greater than the latter considering the same confining pressure, indicating that the irreversible damage for the hydrated shales in this cyclic condition has resulted in obvious difference of the permeability. Furthermore, the curves between the permeability and confining pressure based on the experimental data are fitted as negative exponential functions under initial loading conditions and power functions under more cyclic loading conditions, showing that more loading process will change the permeability evolution model. However, the permeability while unloading changes smoothly and can be fitted as a power function with the confining pressure. And in addition, the loss ratio and recovery ratio of the permeability have been deeply researched under five cyclic loading and unloading conditions, thoroughly explaining the permeability decreasing variation with more cyclic processes. Finally, the sensitive coefficients of the permeability have been investigated to observe the largest coefficients under initial cyclic conditions and less and less with more cyclic processes, especially the coefficients while loading which are more sensitive to lower confining pressure and smaller while unloading, which is in accordance with the shale permeability loss and recovery variation, revealing the permeability evolution of the hydrated shale under complex extracted environment.


Sign in / Sign up

Export Citation Format

Share Document