scholarly journals Positioning with medium frequency R‐Mode

Navigation ◽  
2021 ◽  
Author(s):  
Lars Grundhöfer ◽  
Filippo Giacomo Rizzi ◽  
Stefan Gewies ◽  
Michael Hoppe ◽  
Jesper Bäckstedt ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
N.A. Grekov ◽  
◽  
A.N. Grekov ◽  
E.N. Sychov ◽  
◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2058
Author(s):  
Zheren Zhang ◽  
Yingjie Tang ◽  
Zheng Xu

Offshore wind power has great development potential, for which the key factors are reliable and economical wind farms and integration systems. This paper proposes a medium-frequency wind farm and MMC-HVDC integration system. In the proposed scheme, the operating frequency of the offshore wind farm and its power collection system is increased from the conventional 50/60 Hz rate to the medium-frequency range, i.e., 100–400 Hz; the offshore wind power is transmitted to the onshore grid via the modular multilevel converter-based high-voltage direct current transmission (MMC-HVDC). First, this paper explains the principles of the proposed scheme in terms of the system topology and control strategy aspects. Then, the impacts of increasing the offshore system operating frequency on the main parameters of the offshore station are discussed. As the frequency increases, it is shown that the actual value of the electrical equipment, such as the transformers, the arm inductors, and the SM capacitors of the rectifier MMC, can be reduced, which means smaller platforms are required for the step-up transformer station and the converter station. Then, the system operation characteristics are analyzed, with the results showing that the power losses in the system increase slightly with the increase of the offshore AC system frequency. Based on time domain simulation results from power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC), it is noted that the dynamic behavior of the system is not significantly affected with the increase of the offshore AC system frequency in most scenarios. In this way, the technical feasibility of the proposed offshore platform miniaturization technology is proven.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1450
Author(s):  
Alessandro La Ganga ◽  
Roberto Re ◽  
Paolo Guglielmi

Nowadays, the demand for high power converters for DC applications, such as renewable sources or ultra-fast chargers for electric vehicles, is constantly growing. Galvanic isolation is mandatory in most of these applications. In this context, the Solid State Transformer (SST) converter plays a fundamental role. The adoption of the Medium Frequency Transformers (MFT) guarantees galvanic isolation in addition to high performance in reduced size. In the present paper, a multi MFT structure is proposed as a solution to improve the power density and the modularity of the system. Starting from 20kW planar transformer model, experimentally validated, a multi-transformer structure is analyzed. After an analytical treatment of the Input Parallel Output Series (IPOS) structure, an equivalent electrical model of a 200kW IPOS (made by 10 MFTs) is introduced. The model is validated by experimental measurements and tests.


Author(s):  
Mohammad Kharezy ◽  
Hassan Reza Mirzaei ◽  
Yuriy Serdyuk ◽  
Torbjorn Thiringer ◽  
Morteza Eslamian
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document