spot temperature
Recently Published Documents


TOTAL DOCUMENTS

247
(FIVE YEARS 55)

H-INDEX

19
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 133
Author(s):  
H. Petra Kok ◽  
Johannes Crezee

Background: Experience-based adjustments in phase-amplitude settings are applied to suppress treatment limiting hot spots that occur during locoregional hyperthermia for pelvic tumors. Treatment planning could help to further optimize treatments. The aim of this research was to develop temperature-based re-optimization strategies and compare the predicted effectiveness with clinically applied protocol/experience-based steering. Methods: This study evaluated 22 hot spot suppressions in 16 cervical cancer patients (mean age 67 ± 13 year). As a first step, all potential hot spot locations were represented by a spherical region, with a user-specified diameter. For fast and robust calculations, the hot spot temperature was represented by a user-specified percentage of the voxels with the largest heating potential (HPP). Re-optimization maximized tumor T90, with constraints to suppress the hot spot and avoid any significant increase in other regions. Potential hot spot region diameter and HPP were varied and objective functions with and without penalty terms to prevent and minimize temperature increase at other potential hot spot locations were evaluated. Predicted effectiveness was compared with clinically applied steering results. Results: All strategies showed effective hot spot suppression, without affecting tumor temperatures, similar to clinical steering. To avoid the risk of inducing new hot spots, HPP should not exceed 10%. Adding a penalty term to the objective function to minimize the temperature increase at other potential hot spot locations was most effective. Re-optimization times were typically ~10 s. Conclusion: Fast on-line re-optimization to suppress treatment limiting hot spots seems feasible to match effectiveness of ~30 years clinical experience and will be further evaluated in a clinical setting.


2021 ◽  
Vol 28 ◽  
pp. 101352
Author(s):  
Rodrigo Gustavo Dourado da Silva ◽  
Diego Correa Ferreira ◽  
Fernando Viana Avelar Dutra ◽  
Sandro Metrevelle Marcondes Lima e Silva

Author(s):  
Yadi Xu ◽  
Lin Li ◽  
Xuan Yuan

As a core component of the power electronic transformer (PET) in DC network, the multi-level high-frequency power transformer has received great attention due to the insulation material fatigue problems resulting from the hot-spot temperature rises. To solve this problem, a three-winding high-frequency transformer for 10 kVA PET application is designed and made in the laboratory, and the loss and temperature rise distribution is calculated by means of the finite element (FE) electromagnetic-thermal coupling simulation. The influence of temperature on the hysteresis and loss properties of core material has been carefully considered and measured. The influence of skin effect and end effect on the winding loss is taken into account through the establishing three-dimensional FE model. Besides, the convective heat transfer coefficient is solved based on the principle of heat transfer instead of the empirical coefficient method. By compared with the experimental results, the calculated results are validated to be effective in predicting the loss and hot-spot temperature rises of the transformer.


2021 ◽  
Vol 1207 (1) ◽  
pp. 012021
Author(s):  
Chao Zhang ◽  
Zien Zhao ◽  
Wanbin Ren

Abstract The contact spot temperature of electrical contact components substantially affects the reliability and electrical life of any electrical connections within the electrical engineering. In this paper, finite element model of typical spring structure components is built by using COMSOL Multiphysics software. Furthermore, the transient process of contact temperature is simulated by taking account of film resistance on the contact surface. Moreover, a test rig is introduced that makes it possible to measure the electrical contact resistance and temperature within the electrical contact components simultaneously. Finally, correlation between contact resistance and contact spot temperature with different contact force and current levels are investigated explicitly.


Author(s):  
Zhengang Zhao ◽  
Zhangnan Jiang ◽  
Yang Li ◽  
Chuan Li ◽  
Dacheng Zhang

The temperature of the hot-spots on windings is a crucial factor that can limit the overload capacity of the transformer. Few studies consider the impact of the load on the hot-spot when studying the hot-spot temperature and its location. In this paper, a thermal circuit model based on the thermoelectric analogy method is built to simulate the transformer winding and transformer oil temperature distribution. The hot-spot temperature and its location under different loads are qualitatively analyzed, and the hot-spot location is analyzed and compared to the experimental results. The results show that the hot-spot position on the winding under the rated power appears at 85.88% of the winding height, and the hot-spot position of the winding moves down by 5% in turn at 1.3, 1.48, and 1.73 times the rated power respectively.


Author(s):  
Oleg Shutenko ◽  
Oleksii Kulyk

Based on the analysis of test results for 135 high-voltage transformers, ranges of gas percentage, gas ratio values were obtained and nomograms for 10 types of combined defects were made, representing discharges with different intensity which are accompanied by overheating with temperature of 150-300°C. It has been established that in transformers with discharges accompanied by low-temperature overheating the values of CH4/H2, C2H2/CH4, C2H2/C2H6 and C2H2/C2H4 ratios determine the discharge energy, in accordance with the norms regulated by the most known standards, the C2H4/C2H6 ratio varies slightly depending on the hot spot temperature and the C2H6/CH4>1 ratio value. Dynamics of defects nomograms changing in the process of their development is analyzed. It is stated by the analysis results that in majority of cases the primary defect is discharges with different intensity, which are accompanied by low-temperature overheating. Overheating occurs in the process of discharge development. The analysis of recognition reliability of discharges with different intensity which are accompanied by 150-300°C overheating was made, using norms and criteria regulated by the most known standards and methods. The results of the analysis show that the most reliable recognition of the defects analyzed is provided to a large extent by the graphical methods, namely the ETRA square and the Duval triangle. The results obtained will significantly increase the recognition reliability of combined defects based on the results of the dissolved gas analysis in the oil.


Author(s):  
Zhengang Zhao ◽  
Zhengyu Yang ◽  
Yuyuan Wang ◽  
Ke Liang ◽  
Nengsi Jin ◽  
...  

According to the national standard GB/T 1094.7-2008, the method of hot spot measurement of oil-immersed transformer is used to place several temperature sensors inside the gasket within the predicted hot spot position to measure the temperature of winding transformer. The highest temperature measured is regarded as the hot spot temperature of transformer. Since the winding and gasket are bad conductors of heat, there exists certain temperature difference between the gasket and the hot spot temperature of the winding. In order to ensure safe operation of transformer, the thermal environment of temperature measuring point is analyzed and the discrete equation of boundary node is established. The parameters are set according to the heat transfer mode of the oil-immersed transformer and the temperature characteristics of each heat transfer node is analyzed. Gauss-Seidel Iteration method is used to calculate the theoretical value of the measuring point of the oil-immersed transformer and the heat transfer model of the measuring point is established for further analysis. The experimental platform of the oil-immersed transformer simulator is established according to the method described in the national standard and used to measure the hot spot temperature and winding surface temperature. The results show that when the winding temperature is 77 ℃, the heat transfer model of the temperature measuring point is 74.7 ℃ and the experimental temperature of the temperature measuring point is 74.9 ℃. The error between theoretical calculation temperature and experimental temperature is 0.2. As the temperature of the experiment increases, the temperature difference between the temperature point and the winding temperature gradually increases, and the maximum absolute error is 2.1 ℃.


Author(s):  
Constantin Cristinel Girdu ◽  
Badea Lepădătescu

he laser beam is a source of radiation with concentrated energy. The characteristics of the laser beam (spot energy, focal spot diameter, spot temperature) are aspects theoretically researched in this paper. The intensity of the laser beam transmitted to the surface of the part has a Gaussian shape. A CO2 laser was used in the processing of parts from a HARDOX400 steel sheet with a thickness g = 8mm. The values of the cutting parameters were established by sample tests. An experimental design with 27 observations was analyzed. The width of the cutting slot at the straight profile was measured. Physical quantities derived from the cutting parameters and working parameters used were calculated. Spot energy, cost and interaction time were determined and evaluated using the mathematical model given by GRAPH. The research findings show that the best values of the factors studied converge to average values in minimizing Kerf.


2021 ◽  
pp. 2140021
Author(s):  
Chuan Luo ◽  
Zhen-Gang Zhao ◽  
Yu-Yuan Wang ◽  
Ke Liang ◽  
Jia-Hong Zhang ◽  
...  

The oil-immersed transformer is a crucial piece of equipment in the power system. Operating at the specified temperature is necessary to ensure the normal operation of the transformer. The insulation paper on the winding surface has a significant impact on the actual temperature of the transformers, which is often overlooked by researchers. The one-dimensional steady-state heat conduction model of the transformer is established by analyzing the heat diffusion process of winding to transformer oil. Atomic force microscope was used to observe the microsurface structure of insulation paper and copper. According to the experiment, the heat transfer resistance in the series process of heat transfer at [Formula: see text]C is 0.0138 m2 K/W. Space thermal circuit model of transformer is established by thermoelectricity analogy method, and the simulation circuit is optimized according to the boundary conditions set up in the actual environment. The results show that the error of the hot spot temperature is closer to the measured temperature and decreases by 2.5% when considering the thermal resistance of insulation paper.


Sign in / Sign up

Export Citation Format

Share Document