Faster exact algorithms for steiner trees in planar networks

Networks ◽  
1990 ◽  
Vol 20 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Marshall Bern
2019 ◽  
Vol 12 (01) ◽  
pp. 2050003
Author(s):  
Aymeric Grodet ◽  
Takuya Tsuchiya

We describe a technique to reorganize topologies of Steiner trees by exchanging neighbors of adjacent Steiner points. We explain how to use the systematic way of building trees, and therefore topologies, to find the correct topology after nodes have been exchanged. Topology reorganizations can be inserted into the enumeration scheme commonly used by exact algorithms for the Euclidean Steiner tree problem in [Formula: see text]-space, providing a method of improvement different than the usual approaches. As an example, we show how topology reorganizations can be used to dynamically change the exploration of the usual branch-and-bound tree when two Steiner points collide during the optimization process. We also turn our attention to the erroneous use of a pre-optimization lower bound in the original algorithm and give an example to confirm its usage is incorrect. In order to provide numerical results on correct solutions, we use planar equilateral points to quickly compute this lower bound, even in dimensions higher than two. Finally, we describe planar twin trees, identical trees yielded by different topologies, whose generalization to higher dimensions could open a new way of building Steiner trees.


2016 ◽  
Vol 63 (4) ◽  
pp. 1-60 ◽  
Author(s):  
Fedor V. Fomin ◽  
Daniel Lokshtanov ◽  
Fahad Panolan ◽  
Saket Saurabh

Author(s):  
Alessandro Hill ◽  
Roberto Baldacci ◽  
Stefan Voß
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
François Dayrens ◽  
Simon Masnou ◽  
Matteo Novaga ◽  
Marco Pozzetta

AbstractWe introduce a notion of connected perimeter for planar sets defined as the lower semicontinuous envelope of perimeters of approximating sets which are measure-theoretically connected. A companion notion of simply connected perimeter is also studied. We prove a representation formula which links the connected perimeter, the classical perimeter, and the length of suitable Steiner trees. We also discuss the application of this notion to the existence of solutions to a nonlocal minimization problem with connectedness constraint.


2021 ◽  
Vol 50 (1) ◽  
pp. 33-40
Author(s):  
Chenhao Ma ◽  
Yixiang Fang ◽  
Reynold Cheng ◽  
Laks V.S. Lakshmanan ◽  
Wenjie Zhang ◽  
...  

Given a directed graph G, the directed densest subgraph (DDS) problem refers to the finding of a subgraph from G, whose density is the highest among all the subgraphs of G. The DDS problem is fundamental to a wide range of applications, such as fraud detection, community mining, and graph compression. However, existing DDS solutions suffer from efficiency and scalability problems: on a threethousand- edge graph, it takes three days for one of the best exact algorithms to complete. In this paper, we develop an efficient and scalable DDS solution. We introduce the notion of [x, y]-core, which is a dense subgraph for G, and show that the densest subgraph can be accurately located through the [x, y]-core with theoretical guarantees. Based on the [x, y]-core, we develop both exact and approximation algorithms. We have performed an extensive evaluation of our approaches on eight real large datasets. The results show that our proposed solutions are up to six orders of magnitude faster than the state-of-the-art.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Juntao Zhu ◽  
Hong Ding ◽  
Yuchen Tao ◽  
Zhen Wang ◽  
Lanping Yu

The spread of a computer virus among the Internet of Things (IoT) devices can be modeled as an Epidemic Containment (EC) game, where each owner decides the strategy, e.g., installing anti-virus software, to maximize his utility against the susceptible-infected-susceptible (SIS) model of the epidemics on graphs. The EC game’s canonical solution concepts are the Minimum/Maximum Nash Equilibria (MinNE/MaxNE). However, computing the exact MinNE/MaxNE is NP-hard, and only several heuristic algorithms are proposed to approximate the MinNE/MaxNE. To calculate the exact MinNE/MaxNE, we provide a thorough analysis of some special graphs and propose scalable and exact algorithms for general graphs. Especially, our contributions are four-fold. First, we analytically give the MinNE/MaxNE for EC on special graphs based on spectral radius. Second, we provide an integer linear programming formulation (ILP) to determine MinNE/MaxNE for the general graphs with the small epidemic threshold. Third, we propose a branch-and-bound (BnB) framework to compute the exact MinNE/MaxNE in the general graphs with several heuristic methods to branch the variables. Fourth, we adopt NetShiled (NetS) method to approximate the MinNE to improve the scalability. Extensive experiments demonstrate that our BnB algorithm can outperform the naive enumeration method in scalability, and the NetS can improve the scalability significantly and outperform the previous heuristic method in solution quality.


1992 ◽  
Vol 42 (3) ◽  
pp. 151-152
Author(s):  
J.S. Salowe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document