Efficient Directed Densest Subgraph Discovery

2021 ◽  
Vol 50 (1) ◽  
pp. 33-40
Author(s):  
Chenhao Ma ◽  
Yixiang Fang ◽  
Reynold Cheng ◽  
Laks V.S. Lakshmanan ◽  
Wenjie Zhang ◽  
...  

Given a directed graph G, the directed densest subgraph (DDS) problem refers to the finding of a subgraph from G, whose density is the highest among all the subgraphs of G. The DDS problem is fundamental to a wide range of applications, such as fraud detection, community mining, and graph compression. However, existing DDS solutions suffer from efficiency and scalability problems: on a threethousand- edge graph, it takes three days for one of the best exact algorithms to complete. In this paper, we develop an efficient and scalable DDS solution. We introduce the notion of [x, y]-core, which is a dense subgraph for G, and show that the densest subgraph can be accurately located through the [x, y]-core with theoretical guarantees. Based on the [x, y]-core, we develop both exact and approximation algorithms. We have performed an extensive evaluation of our approaches on eight real large datasets. The results show that our proposed solutions are up to six orders of magnitude faster than the state-of-the-art.

2021 ◽  
Vol 46 (4) ◽  
pp. 1-45
Author(s):  
Chenhao Ma ◽  
Yixiang Fang ◽  
Reynold Cheng ◽  
Laks V. S. Lakshmanan ◽  
Wenjie Zhang ◽  
...  

Given a directed graph G , the directed densest subgraph (DDS) problem refers to the finding of a subgraph from G , whose density is the highest among all the subgraphs of G . The DDS problem is fundamental to a wide range of applications, such as fraud detection, community mining, and graph compression. However, existing DDS solutions suffer from efficiency and scalability problems: on a 3,000-edge graph, it takes three days for one of the best exact algorithms to complete. In this article, we develop an efficient and scalable DDS solution. We introduce the notion of [ x , y ]-core, which is a dense subgraph for G , and show that the densest subgraph can be accurately located through the [ x , y ]-core with theoretical guarantees. Based on the [ x , y ]-core, we develop exact and approximation algorithms. We further study the problems of maintaining the DDS over dynamic directed graphs and finding the weighted DDS on weighted directed graphs, and we develop efficient non-trivial algorithms to solve these two problems by extending our DDS algorithms. We have performed an extensive evaluation of our approaches on 15 real large datasets. The results show that our proposed solutions are up to six orders of magnitude faster than the state-of-the-art.


2018 ◽  
Vol 1 (1) ◽  
pp. 10502-1-10502-15 ◽  
Author(s):  
Shida Beigpour ◽  
Sumit Shekhar ◽  
Mohsen Mansouryar ◽  
Karol Myszkowski ◽  
Hans-Peter Seidel

Abstract The authors present a framework for image-based surface appearance editing for light-field data. Their framework improves over the state of the art without the need for a full “inverse rendering,” so that full geometrical data, or presence of highly specular or reflective surfaces are not required. It is robust to noisy or missing data, and handles many types of camera array setup ranging from a dense light field to a wide-baseline stereo-image pair. They start by extracting intrinsic layers from the light-field image set maintaining consistency between views. It is followed by decomposing each layer separately into frequency bands, and applying a wide range of “band-sifting” operations. The above approach enables a rich variety of perceptually plausible surface finishing and materials, achieving novel effects like translucency. Their GPU-based implementation allow interactive editing of an arbitrary light-field view, which can then be consistently propagated to the rest of the views. The authors provide extensive evaluation of our framework on various datasets and against state-of-the-art solutions.


2020 ◽  
Vol 12 ◽  
Author(s):  
Francisco Basílio ◽  
Ricardo Jorge Dinis-Oliveira

Background: Pharmacobezoars are specific types of bezoars formed when medicines, such as tablets, suspensions, and/or drug delivery systems, aggregate and may cause death by occluding airways with tenacious material or by eluting drugs resulting in toxic or lethal blood concentrations. Objective: This work aims to fully review the state-of-the-art regarding pathophysiology, diagnosis, treatment and other relevant clinical and forensic features of pharmacobezoars. Results: patients of a wide range of ages and in both sexes present with signs and symptoms of intoxications or more commonly gastrointestinal obstructions. The exact mechanisms of pharmacobezoar formation are unknown but is likely multifactorial. The diagnosis and treatment depend on the gastrointestinal segment affected and should be personalized to the medication and the underlying factor. A good and complete history, physical examination, image tests, upper endoscopy and surgery through laparotomy of the lower tract are useful for diagnosis and treatment. Conclusion: Pharmacobezoars are rarely seen in clinical and forensic practice. They are related to controlled or immediate-release formulations, liquid or non-digestible substances, in normal or altered digestive motility/anatomy tract, and in overdoses or therapeutic doses, and should be suspected in the presence of risk factors or patients taking drugs which may form pharmacobezoars.


This volume vividly demonstrates the importance and increasing breadth of quantitative methods in the earth sciences. With contributions from an international cast of leading practitioners, chapters cover a wide range of state-of-the-art methods and applications, including computer modeling and mapping techniques. Many chapters also contain reviews and extensive bibliographies which serve to make this an invaluable introduction to the entire field. In addition to its detailed presentations, the book includes chapters on the history of geomathematics and on R.G.V. Eigen, the "father" of mathematical geology. Written to commemorate the 25th anniversary of the International Association for Mathematical Geology, the book will be sought after by both practitioners and researchers in all branches of geology.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Author(s):  
Danila Piatov ◽  
Sven Helmer ◽  
Anton Dignös ◽  
Fabio Persia

AbstractWe develop a family of efficient plane-sweeping interval join algorithms for evaluating a wide range of interval predicates such as Allen’s relationships and parameterized relationships. Our technique is based on a framework, components of which can be flexibly combined in different manners to support the required interval relation. In temporal databases, our algorithms can exploit a well-known and flexible access method, the Timeline Index, thus expanding the set of operations it supports even further. Additionally, employing a compact data structure, the gapless hash map, we utilize the CPU cache efficiently. In an experimental evaluation, we show that our approach is several times faster and scales better than state-of-the-art techniques, while being much better suited for real-time event processing.


2020 ◽  
Vol 499 (4) ◽  
pp. 5732-5748 ◽  
Author(s):  
Rahul Kannan ◽  
Federico Marinacci ◽  
Mark Vogelsberger ◽  
Laura V Sales ◽  
Paul Torrey ◽  
...  

ABSTRACT We present a novel framework to self-consistently model the effects of radiation fields, dust physics, and molecular chemistry (H2) in the interstellar medium (ISM) of galaxies. The model combines a state-of-the-art radiation hydrodynamics module with a H  and He  non-equilibrium thermochemistry module that accounts for H2 coupled to an empirical dust formation and destruction model, all integrated into the new stellar feedback framework SMUGGLE. We test this model on high-resolution isolated Milky-Way (MW) simulations. We show that the effect of radiation feedback on galactic star formation rates is quite modest in low gas surface density galaxies like the MW. The multiphase structure of the ISM, however, is highly dependent on the strength of the interstellar radiation field. We are also able to predict the distribution of H2, that allow us to match the molecular Kennicutt–Schmidt (KS) relation, without calibrating for it. We show that the dust distribution is a complex function of density, temperature, and ionization state of the gas. Our model is also able to match the observed dust temperature distribution in the ISM. Our state-of-the-art model is well-suited for performing next-generation cosmological galaxy formation simulations, which will be able to predict a wide range of resolved (∼10 pc) properties of galaxies.


Author(s):  
Jose A. Gallud ◽  
Monica Carreño ◽  
Ricardo Tesoriero ◽  
Andrés Sandoval ◽  
María D. Lozano ◽  
...  

AbstractTechnology-based education of children with special needs has become the focus of many research works in recent years. The wide range of different disabilities that are encompassed by the term “special needs”, together with the educational requirements of the children affected, represent an enormous multidisciplinary challenge for the research community. In this article, we present a systematic literature review of technology-enhanced and game-based learning systems and methods applied on children with special needs. The article analyzes the state-of-the-art of the research in this field by selecting a group of primary studies and answering a set of research questions. Although there are some previous systematic reviews, it is still not clear what the best tools, games or academic subjects (with technology-enhanced, game-based learning) are, out of those that have obtained good results with children with special needs. The 18 articles selected (carefully filtered out of 614 contributions) have been used to reveal the most frequent disabilities, the different technologies used in the prototypes, the number of learning subjects, and the kind of learning games used. The article also summarizes research opportunities identified in the primary studies.


SIMULATION ◽  
2017 ◽  
Vol 93 (5) ◽  
pp. 409-426 ◽  
Author(s):  
Jerome A Arokkiam ◽  
Pedro Alvarez ◽  
Xiuchao Wu ◽  
Kenneth N Brown ◽  
Cormac J Sreenan ◽  
...  

10-gigabit-capable Passive Optical Network (XG-PON), one of the latest standards of optical access networks, is regarded as one of the key technologies for future Internet access networks. This paper presents the design and evaluation of our XG-PON module for the ns-3 network simulator. This module is designed and implemented with the aim to provide a standards-compliant, configurable, and extensible module that can simulate XG-PON with reasonable speed and support a wide range of research topics. These include analyzing and improving the performance of XG-PON, studying the interactions between XG-PON and the upper-layer protocols, and investigating its integration with various wireless networks. In this paper, we discuss its design principles, describe the implementation details, and present an extensive evaluation on both functionality and performance.


1987 ◽  
Vol 60 (3) ◽  
pp. 381-416 ◽  
Author(s):  
B. S. Nau

Abstract The understanding of the engineering fundamentals of rubber seals of all the various types has been developing gradually over the past two or three decades, but there is still much to understand, Tables V–VII summarize the state of the art. In the case of rubber-based gaskets, the field of high-temperature applications has scarcely been touched, although there are plans to initiate work in this area both in the U.S.A. at PVRC, and in the U.K., at BHRA. In the case of reciprocating rubber seals, a broad basis of theory and experiment has been developed, yet it still is not possible to design such a seal from first principles. Indeed, in a comparative series of experiments run recently on seals from a single batch, tested in different laboratories round the world to the same test procedure, under the aegis of an ISO working party, a very wide range of values was reported for leakage and friction. The explanation for this has still to be ascertained. In the case of rotary lip seals, theories and supporting evidence have been brought forward to support alternative hypotheses for lubrication and sealing mechanisms. None can be said to have become generally accepted, and it remains to crystallize a unified theory.


Sign in / Sign up

Export Citation Format

Share Document