Numerical simulation of forming processes using a coupled fluid flow and heat transfer model

1992 ◽  
Vol 35 (4) ◽  
pp. 807-833 ◽  
Author(s):  
M. P. Reddy ◽  
J. N. Reddy
2013 ◽  
Vol 712-715 ◽  
pp. 1600-1604
Author(s):  
Jing Zhao ◽  
Bao Lan Xiao ◽  
Wei Ming Wu ◽  
Xiao Li Yu ◽  
Guo Dong Lu

The excellent thermal hydraulic performances of coolers are the foundations of vehicular safety and stability. Structure, material, fin type and arrangement all have important effects on the thermal hydraulic performances. Numerical simulation method was adopted in this paper to investigate the effect of fin arrangement. The fluid flow and heat transfer performances were contrasted and analyzed under two different fin arrangements. It was found that fin arrangement effected thermal hydraulic performances severely and during the design process of a cooler, the performance requirements could be met through adjusting fin arrangements.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Saba Javaid ◽  
Asim Aziz

The present work covers the flow and heat transfer model for the power-law nanofluid in the presence of a porous medium over the penetrable plate. The flow is caused by the impulsive movement of the plate embedded in Darcy’s type porous medium. The flow and heat transfer model has been examined with the effect of linear thermal radiation and the internal heat source or sink in the flow regime. The Rosseland approximation is utilized for the optically thick nanofluid. To form the closed-form solutions for the governing partial differential equations of conservation of mass, momentum, and energy, the Lie symmetry analysis is used to get the reductions of governing equations and to find the group invariants. These invariants are then utilized to obtain the exact solution for all three cases, i.e., shear thinning fluid, Newtonian fluid, and shear thickening fluid. In the end, all solutions are plotted for the cu -water nanofluid and discussed briefly for the different emerging flow and heat transfer parameters.


Sign in / Sign up

Export Citation Format

Share Document