Numerical simulations for the predator–prey model as a prototype of an excitable system

Author(s):  
Mostafa M. A. Khater ◽  
Bandar Almohsen ◽  
Dumitru Baleanu ◽  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Junli Liu ◽  
Pan Lv ◽  
Bairu Liu ◽  
Tailei Zhang

In this paper, we propose a time-delayed predator-prey model with Holling-type II functional response, which incorporates the gestation period and the cost of fear into prey reproduction. The dynamical behavior of this system is both analytically and numerically investigated from the viewpoint of stability, permanence, and bifurcation. We found that there are stability switches, and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. The explicit formulae which determine the direction, stability, and other properties of the bifurcating periodic solutions are given by using the normal form theory and center manifold theorem. We perform extensive numerical simulations to explore the impact of some important parameters on the dynamics of the system. Numerical simulations show that high levels of fear have a stabilizing effect while relatively low levels of fear have a destabilizing effect on the predator-prey interactions which lead to limit-cycle oscillations. We also found that the model with or without a delay-dependent factor can have a significantly different dynamics. Thus, ignoring the delay or not including the delay-dependent factor might result in inaccurate modelling predictions.



2016 ◽  
Vol 10 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Boshan Chen ◽  
Jiejie Chen

First, a discrete stage-structured and harvested predator–prey model is established, which is based on a predator–prey model with Type III functional response. Then theoretical methods are used to investigate existence of equilibria and their local properties. Third, it is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of [Formula: see text], by using the normal form of discrete systems, the center manifold theorem and the bifurcation theory, as varying the model parameters in some range. In particular, the direction and the stability of the flip bifurcation and the Neimark–Sacker bifurcation are showed. Finally, numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as cascades of period-doubling bifurcation and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. In addition, we show also the stabilizing effect of the harvesting by using numerical simulations.



2016 ◽  
Vol 66 (1) ◽  
Author(s):  
Zhenhai Liu ◽  
Qun Liu

AbstractIn this paper, we study a stochastic delay predator-prey model in a polluted environment. Sufficient criteria for extinction and non-persistence in the mean of the model are obtained. The critical value between persistence and extinction is also derived for each population. Finally, some numerical simulations are provided to support our main results.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
C. Gokila ◽  
M. Sambath

Abstract In the present work, we consider a stochastic predator-prey model with disease in prey and distributed delay. Firstly, we establish sufficient conditions for the extinction of the disease and also permanence of healthy prey and predator. Besides, we obtain the condition for the existence of an ergodic stationary distribution through the stochastic Lyapunov function. Finally, we provide some numerical simulations to validate our theoretical findings.



2010 ◽  
Vol 18 (02) ◽  
pp. 437-453 ◽  
Author(s):  
A. K. MISRA ◽  
B. DUBEY

In this paper a predator-prey model with discrete delay and harvesting of predator is proposed and analyzed by considering ratio-dependent functional response. Conditions of existence of various equilibria and their stability have been discussed. By taking delay as a bifurcation parameter, the system is found to undergo a Hopf bifurcation. Numerical simulations are also performed to illustrate the results.



2014 ◽  
Vol 07 (05) ◽  
pp. 1450047 ◽  
Author(s):  
Lakshmi Narayan Guin ◽  
Prashanta Kumar Mandal

In this paper, spatial patterns of a diffusive predator–prey model with sigmoid (Holling type III) ratio-dependent functional response which concerns the influence of logistic population growth in prey and intra-species competition among predators are investigated. The (local and global) asymptotic stability behavior of the corresponding non-spatial model around the unique positive interior equilibrium point in homogeneous steady state is obtained. In addition, we derive the conditions for Turing instability and the consequent parametric Turing space in spatial domain. The results of spatial pattern analysis through numerical simulations are depicted and analyzed. Furthermore, we perform a series of numerical simulations and find that the proposed model dynamics exhibits complex pattern replication. The feasible results obtained in this paper indicate that the effect of diffusion in Turing instability plays an important role to understand better the pattern formation in ecosystem.



2021 ◽  
Vol 26 (1) ◽  
pp. 40-57
Author(s):  
Ibrahim M. Elmojtaba ◽  
Kawkab Al-Amri ◽  
Qamar J.A. Khan

In this paper, we consider a predator-prey model incorporating fear and refuge.  Our results show that the predator-free equilibrium is globally asymptotically stable if the ratio between the death rate of predators and the conversion rate of prey into predator is greater than the value of prey in refuge at equilibrium.  We also show that the co-existence equilibrium points are locally asymptotically stable if the value of the prey outside refuge is greater than half of the carrying capacity.  Numerical simulations show that when the intensity of fear increases, the fraction of the prey inside refuge increases; however, it has no effect on the fraction of the prey outside refuge, in the long run. It is shown that the intensity of fear harms predator population size. Numerical simulations show that the application of Z-control will force the system to reach any desired state within a limited time, whether the desired state is a constant state or a periodic state. Our results show that when the refuge size is taken to be a non-constant function of the prey outside refuge, the systems change their dynamics. Namely, when it is a linear function or an exponential function, the system always reaches the predator-free equilibrium.  However, when it is taken as a logistic equation, the system reaches the co-existence equilibrium after long term oscillations.



2020 ◽  
Vol 13 (03) ◽  
pp. 2050018
Author(s):  
Xiaoxia Guo ◽  
Zhiming Guo

This paper concerns with a Markov-switching predator–prey model with Allee effect for preys. The conditions under which extinction of predator and prey populations occur have been established. Sufficient conditions are also given for persistence and global attractivity in mean. In addition, stability in the distribution of the system under consideration is derived under some assumptions. Finally, numerical simulations are carried out to illustrate theoretical results.



2000 ◽  
Vol 13 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Azmy S. Ackleh ◽  
David F. Marshall ◽  
Henry E. Heatherly

In this paper we discuss the asymptotic behavior of a predator-prey model with distributed growth and mortality rates. We exhibit simple criteria on the parameters which guarantee that all subpopulations but one predator-prey pair are driven to extinction as t→∞. Finally, we present numerical simulations to illustrate the theoretical results.



Sign in / Sign up

Export Citation Format

Share Document