A Markov-switching predator–prey model with Allee effect for preys

2020 ◽  
Vol 13 (03) ◽  
pp. 2050018
Author(s):  
Xiaoxia Guo ◽  
Zhiming Guo

This paper concerns with a Markov-switching predator–prey model with Allee effect for preys. The conditions under which extinction of predator and prey populations occur have been established. Sufficient conditions are also given for persistence and global attractivity in mean. In addition, stability in the distribution of the system under consideration is derived under some assumptions. Finally, numerical simulations are carried out to illustrate theoretical results.

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1280
Author(s):  
Liyun Lai ◽  
Zhenliang Zhu ◽  
Fengde Chen

We proposed and analyzed a predator–prey model with both the additive Allee effect and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria. Some sufficient conditions on the global stability of the positive equilibrium were established by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation. Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis, we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear effect, the smaller the density of predator species. However, the fear effect has no influence on the final density of the prey.


2020 ◽  
Vol 2 (2) ◽  
pp. 87-96
Author(s):  
Hasan S. Panigoro ◽  
Emli Rahmi ◽  
Novianita Achmad ◽  
Sri Lestari Mahmud

In this paper, the influence of additive Allee effect in prey and periodic harvesting in predator to the dynamics of the Leslie-Gower predator-prey model is proposed. We first simplify the model to the non-dimensional system by scaling the variable and transform the model into an autonomous system. If the effect Allee is weak, we have at most two equilibrium points, else if the Allee effect is strong, at most four equilibrium points may exist. Furthermore, the behavior of the system around equilibrium points is investigated. In the end, we give numerical simulations to support theoretical results.


Author(s):  
Jia Liu

In this study, we consider a diffusive predator–prey model with multiple Allee effects induced by fear factors. We investigate the existence, boundedness and permanence of the solution of the system. We also discuss the existence and non-existence of non-constant solutions. We derive sufficient conditions for spatially homogeneous (non-homogenous) Hopf bifurcation and steady state bifurcation. Theoretical and numerical simulations show that strong Allee effect and fear effect have great effect on the dynamics of system.


2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Chunqing Wu ◽  
Shengming Fan ◽  
Patricia J. Y. Wong

We study two discrete predator-prey models in patchy environment, one without dispersal corridors and one with dispersal corridors. Dispersal corridors are passes that allow the migration of species from one patch to another and their existence may influence the permanence of the model. We will offer sufficient conditions to guarantee the permanence of the two predator-prey models. By comparing the two permanence criteria, we discuss the effects of dispersal corridors on the permanence of the predator-prey model. It is found that the dispersion of the prey from one patch to another is helpful to the permanence of the prey if the population growth of the prey is density dependent; however, this dispersion of the prey could be disadvantageous or advantageous to the permanence of the predator. Five numerical examples are presented to confirm the theoretical results obtained and to illustrate the effects of dispersal corridors on the permanence of the predator-prey model.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lei Hang ◽  
Long Zhang ◽  
Xiaowen Wang ◽  
Hongli Li ◽  
Zhidong Teng

AbstractIn this paper, a hybrid predator–prey model with two general functional responses under seasonal succession is proposed. The model is composed of two subsystems: in the first one, the prey follows the Gompertz growth, and it turns to the logistic growth in the second subsystem since seasonal succession. The two processes are connected by impulsive perturbations. Some very general, weak criteria on the ultimate boundedness, permanence, existence, uniqueness and global attractivity of predator-free periodic solution are established. We find that the hybrid population model with seasonal succession has more survival possibilities of natural species than the usual population models. The theoretical results are illustrated by special examples and numerical simulations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
C. Gokila ◽  
M. Sambath

Abstract In the present work, we consider a stochastic predator-prey model with disease in prey and distributed delay. Firstly, we establish sufficient conditions for the extinction of the disease and also permanence of healthy prey and predator. Besides, we obtain the condition for the existence of an ergodic stationary distribution through the stochastic Lyapunov function. Finally, we provide some numerical simulations to validate our theoretical findings.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450071 ◽  
Author(s):  
Kai Wang ◽  
Yanling Zhu

In this paper, by utilizing the comparison theorem and constructing a suitable Lyapunov functional the predator–prey model with modified Leslie–Gower Holling-type II schemes and a deviating argument is studied. Some sufficient conditions are obtained for uniform persistence and global attractivity of positive periodic solutions for this model. Furthermore, an example shows that the obtained criteria are easily verifiable.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Zhang ◽  
Shujing Gao ◽  
Kuangang Fan

The dynamic behaviors of a nonautonomous system for migratory birds with Hassell-Varley type functional response and the saturation incidence rate are studied. Under quite weak assumptions, some sufficient conditions are obtained for the permanence and extinction of the disease. Moreover, the global attractivity of the model is discussed by constructing a Lyapunov function. Numerical simulations which support our theoretical analysis are also given.


2018 ◽  
Vol 11 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Saheb Pal ◽  
Sourav Kumar Sasmal ◽  
Nikhil Pal

The stability of the predator–prey model subject to the Allee effect is an interesting topic in recent times. In this paper, we investigate the impact of weak Allee effect on the stability of a discrete-time predator–prey model with Holling type-IV functional response. The mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. We provide sufficient conditions for the flip bifurcation by considering Allee parameter as the bifurcation parameter. We observe that the model becomes stable from chaotic dynamics as the Allee parameter increases. Further, we observe bi-stability behavior of the model between only prey existence equilibrium and the coexistence equilibrium. Our analytical findings are illustrated through numerical simulations.


2011 ◽  
Vol 2011 ◽  
pp. 1-22 ◽  
Author(s):  
Hai-Feng Huo ◽  
Xiaohong Wang ◽  
Carlos Castillo-Chavez

A generalized version of the Leslie-Gower predator-prey model that incorporates the prey population structure is introduced. Our results show that the inclusion of (age) structure in the prey population does not alter the qualitative dynamics of the model; that is, we identify sufficient conditions for the ‘‘trapping’’ of the dynamics in a biological compact set—albeit the analysis is a bit more challenging. The focus is on the study of the boundedness of solutions and identification of sufficient conditions for permanence. Sufficient conditions for the local stability of the nonnegative equilibria of the model are also derived, and sufficient conditions for the global attractivity of positive equilibrium are obtained. Numerical simulations are used to illustrate our results.


Sign in / Sign up

Export Citation Format

Share Document