Analysis on stochastic predator-prey model with distributed delay

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
C. Gokila ◽  
M. Sambath

Abstract In the present work, we consider a stochastic predator-prey model with disease in prey and distributed delay. Firstly, we establish sufficient conditions for the extinction of the disease and also permanence of healthy prey and predator. Besides, we obtain the condition for the existence of an ergodic stationary distribution through the stochastic Lyapunov function. Finally, we provide some numerical simulations to validate our theoretical findings.

2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


2005 ◽  
Vol 2005 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Hai-Feng Huo ◽  
Wan-Tong Li

We first give sufficient conditions for the permanence of nonautonomous discrete ratio-dependent predator-prey model. By linearization of the model at positive solutions and construction of Lyapunov function, we also obtain some conditions which ensure that a positive solution of the model is stable and attracts all positive solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Zhang ◽  
Shujing Gao ◽  
Kuangang Fan

The dynamic behaviors of a nonautonomous system for migratory birds with Hassell-Varley type functional response and the saturation incidence rate are studied. Under quite weak assumptions, some sufficient conditions are obtained for the permanence and extinction of the disease. Moreover, the global attractivity of the model is discussed by constructing a Lyapunov function. Numerical simulations which support our theoretical analysis are also given.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050018
Author(s):  
Xiaoxia Guo ◽  
Zhiming Guo

This paper concerns with a Markov-switching predator–prey model with Allee effect for preys. The conditions under which extinction of predator and prey populations occur have been established. Sufficient conditions are also given for persistence and global attractivity in mean. In addition, stability in the distribution of the system under consideration is derived under some assumptions. Finally, numerical simulations are carried out to illustrate theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yuanfu Shao ◽  
Peiluan Li ◽  
Guoqiang Tang

A predator-prey model with disease in prey, Ivlev-type functional response, and impulsive effects is proposed. By using Floquet theory and small amplitude perturbation skill, sufficient conditions of the existence and global stability of susceptible pest-eradication periodic solution are obtained. By impulsive comparison theorem, conditions ensuring the permanence of the system are established. Examples and simulation are given to show the complex dynamics for the key parameters.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haihong Li ◽  
Daqing Jiang ◽  
Fuzhong Cong ◽  
Haixia Li

We analyze a predator prey model with stochastic perturbation. First, we show that this system has a unique positive solution. Then, we deduce conditions that the system is persistent in time average. Furthermore, we show the conditions that there is a stationary distribution of the system which implies that the system is permanent. After that, conditions for the system going extinct in probability are established. At last, numerical simulations are carried out to support our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Changjin Xu ◽  
Yusen Wu

A Lotka-Volterra predator-prey model with time-varying delays is investigated. By using the differential inequality theory, some sufficient conditions which ensure the permanence and global asymptotic stability of the system are established. The paper ends with some interesting numerical simulations that illustrate our analytical predictions.


Sign in / Sign up

Export Citation Format

Share Document