scholarly journals The sensitivity analysis of the drawpiece response on the finite element shape parameter

PAMM ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 10725-10726
Author(s):  
Pawel Kaldunski ◽  
Leon Kukielka
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2016 ◽  
Author(s):  
Eunjoo Hwang ◽  
Jingwen Hu ◽  
Cong Chen ◽  
Katelyn F. Klein ◽  
Carl S. Miller ◽  
...  

Author(s):  
Srikanth Akkaram ◽  
Jean-Daniel Beley ◽  
Bob Maffeo ◽  
Gene Wiggs

The ability to perform and evaluate the effect of shape changes on the stress, modal and thermal response of components is an important ingredient in the ‘design’ of aircraft engine components. The classical design of experiments (DOE) based approach that is motivated from statistics (for physical experiments) is one of the possible approaches for the evaluation of the component response with respect to design parameters [1]. Since the underlying physical model used for the component response is deterministic and understood through a computer simulation model, one needs to re-think the use of the classical DOE techniques for this class of problems. In this paper, we explore an alternate sensitivity analysis based technique where a deterministic parametric response is constructed using exact derivatives of the complex finite-element (FE) based computer models to design parameters. The method is based on a discrete sensitivity analysis formulation using semi-automatic differentiation [2,3] to compute the Taylor series or its Pade equivalent for finite element based responses. Shape design or optimization in the context of finite element modeling is challenging because the evaluation of the response for different shape requires the need for a meshing consistent with the new geometry. This paper examines the differences in the nature and performance (accuracy and efficiency) of the analytical derivatives approach against other existing approaches with validation on several benchmark structural applications. The use of analytical derivatives for parametric analysis is demonstrated to have accuracy benefits on certain classes of shape applications.


Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


2014 ◽  
Vol 2014 (4) ◽  
pp. 114-124
Author(s):  
Юрий Костенко ◽  
Yuriy Kostenko ◽  
Анатолий Чепурной ◽  
Anatoliy Chepurnoy ◽  
Александр Литвиненко ◽  
...  

The methods of direct perturbation for finite element models of thin-walled engineering constructions for sensitivity analysis of their strength, stiffness and dynamic characteristics to the change in their thickness are proposed. The approach for prediction of distribution for natural frequencies migration as result of change in their thickness are presented. The applicability of the linearized models to determine displacements, stresses and natural frequencies slightly thinned design compared to the nominal (original) are shown. The examples of test problems are given.


Sign in / Sign up

Export Citation Format

Share Document