scholarly journals Impact of the regularity of the sediment bed on bed-load transport

PAMM ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 583-584
Author(s):  
Ramandeep Jain ◽  
Bernhard Vowinckel ◽  
Jochen Fröhlich
Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 368
Author(s):  
Ulrich Zanke ◽  
Aron Roland

Morphodynamic processes on Earth are a result of sediment displacements by the flow of water or the action of wind. An essential part of sediment transport takes place with permanent or intermittent contact with the bed. In the past, numerous approaches for bed-load transport rates have been developed, based on various fundamental ideas. For the user, the question arises which transport function to choose and why just that one. Different transport approaches can be compared based on measured transport rates. However, this method has the disadvantage that any measured data contains inaccuracies that correlate in different ways with the transport functions under comparison. Unequal conditions also exist if the factors of transport functions under test are fitted to parts of the test data set during the development of the function, but others are not. Therefore, a structural formula comparison is made by transferring altogether 13 transport functions into a standardized notation. Although these formulas were developed from different perspectives and with different approaches, it is shown that these approaches lead to essentially the same basic formula for the main variables. These are shear stress and critical shear stress. However, despite the basic structure of these 13 formulas being the same, their coefficients vary significantly. The reason for that variation and the possible effect on the bandwidth of results is identified and discussed. A further result is the finding that not only shear stress affects bed-load transport rates as is expressed by many transport formulas. Transport rates are also significantly affected by the internal friction of the moving sediment as well as by the friction fluid-bed. In the case of not fully rough flow conditions, also viscous effects and thus the Reynolds number becomes of importance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Le Wang ◽  
Dayu Wang ◽  
Alan Cuthbertson ◽  
Deyu Zhong ◽  
Gareth Pender

Differential parametric values associated with bed load sediment transport, that result at the same discharge levels on the rising and falling limbs of a flood hydrograph, are usually defined as bed load hysteresis. This hysteresis in bed load sediment transport rates is of considerable interest in the field of fluvial hydraulics. Within this study, a series of well-defined, symmetrical hydrograph flows are generated over a graded, mobile sediment bed to fully examine the hysteresis of the resulting bed load sediment transport in terms of the threshold of motion, and differential bed load transport rates and bed load yields during the hydrographs. The experiments are conducted in a titling flume without sediment supply specified at the upstream inlet, thereby representing typical river reach conditions immediately downstream of a dam that are exclusively subject to net in-channel bed degradation from sediment transport initiated during flood events. Our results show that the fractional bed load transport of defined fine, medium and coarse size classes within the graded sediment bed generally display clockwise, no/mixed and counter-clockwise hysteresis patterns, respectively, with clockwise hysteresis most commonly found for the coarse size class mobilised by hydrographs with long durations. By contrast, counter-clockwise hysteresis is usually observed for fine size class transported by hydrographs with short durations. Accordingly, the corresponding reference stresses for each size class vary between different hydrographs and are primarily controlled by the hydrograph flashiness (i.e. unsteadiness) and magnitude (i.e. total water work). Moreover, it is shown that the hysteresis effect, particularly for those size classes and hydrograph combinations that result in clockwise and counter-clockwise behaviour, should be fully accounted for when reproducing bed load transport rates using separate-limb based method. Finally, we investigate the relative fractions of the overall bed load yields generated during the rising and falling limbs of all symmetrical hydrographs (i.e. the bed load yield ratio), which are found to be primarily dependent on bed load transport hysteresis. Finally, the relationship between the bed load yield ratio and the ratio of reference stresses for the fractional sediment motion of each size class on both limbs is found to follow a power law.


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


1996 ◽  
Vol 40 ◽  
pp. 813-818
Author(s):  
Minoru HARADA ◽  
Kazuo ASHIDA ◽  
Takashi DENO ◽  
Yuji OHMOTO

2016 ◽  
Vol 142 (5) ◽  
pp. 04016003 ◽  
Author(s):  
Carlos R. Wyss ◽  
Dieter Rickenmann ◽  
Bruno Fritschi ◽  
Jens M. Turowski ◽  
Volker Weitbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document