clockwise hysteresis
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Le Wang ◽  
Dayu Wang ◽  
Alan Cuthbertson ◽  
Deyu Zhong ◽  
Gareth Pender

Differential parametric values associated with bed load sediment transport, that result at the same discharge levels on the rising and falling limbs of a flood hydrograph, are usually defined as bed load hysteresis. This hysteresis in bed load sediment transport rates is of considerable interest in the field of fluvial hydraulics. Within this study, a series of well-defined, symmetrical hydrograph flows are generated over a graded, mobile sediment bed to fully examine the hysteresis of the resulting bed load sediment transport in terms of the threshold of motion, and differential bed load transport rates and bed load yields during the hydrographs. The experiments are conducted in a titling flume without sediment supply specified at the upstream inlet, thereby representing typical river reach conditions immediately downstream of a dam that are exclusively subject to net in-channel bed degradation from sediment transport initiated during flood events. Our results show that the fractional bed load transport of defined fine, medium and coarse size classes within the graded sediment bed generally display clockwise, no/mixed and counter-clockwise hysteresis patterns, respectively, with clockwise hysteresis most commonly found for the coarse size class mobilised by hydrographs with long durations. By contrast, counter-clockwise hysteresis is usually observed for fine size class transported by hydrographs with short durations. Accordingly, the corresponding reference stresses for each size class vary between different hydrographs and are primarily controlled by the hydrograph flashiness (i.e. unsteadiness) and magnitude (i.e. total water work). Moreover, it is shown that the hysteresis effect, particularly for those size classes and hydrograph combinations that result in clockwise and counter-clockwise behaviour, should be fully accounted for when reproducing bed load transport rates using separate-limb based method. Finally, we investigate the relative fractions of the overall bed load yields generated during the rising and falling limbs of all symmetrical hydrographs (i.e. the bed load yield ratio), which are found to be primarily dependent on bed load transport hysteresis. Finally, the relationship between the bed load yield ratio and the ratio of reference stresses for the fractional sediment motion of each size class on both limbs is found to follow a power law.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 349
Author(s):  
Arash Khosravi ◽  
Matteo Zucchini ◽  
Veronica Giorgi ◽  
Adriano Mancini ◽  
Davide Neri

Recently, several studies on olive fruit growth have focused on circadian monitoring as an important orchard management tool. The olive fruit growth trend is described by double sigmoid model with four growth phases, where the third phase spans from the end of pit hardening to initial fruit maturation, and the last phase includes olive maturation up to fruit drop. Environmental factors play an important role in fruit growth, with vapor pressure deficit (VPD) being a keystone factor. Our experiment was designed to hourly monitor olive (Olea europaea L. cv. ‘Frantoio’) fruit transversal diameter from approximately initial pit hardening (II Phase), extension (III Phase) until harvest time (IV Phase) in the attempt to determine whether fruit growth dynamically responds to environmental variables such as diurnal VPD change in different stages of fruit development. Automatic extensimeters were applied in open field and VPD was calculated from data of our weather station. Throughout the experiment period, the circadian model of fruit growth showed two steps: shrinkage and expansion. Almost in all days of the third phase of fruit growth, daily response of transversal diameter to VPD formed complete clockwise hysteresis loops. During the fourth phase of fruit growth, with increasing fruit maturation, the complete clockwise hysteresis loop experienced some abnormality. At the fourth stage of fruit growth there were incomplete and partial clockwise hysteresis loops. We conclude that hysteresis can be employed to detect the shift between the end of the third phase (cell expansion) and the beginning of the fourth phase (fruit maturation) of fruit growth. The disappearance of the complete clockwise hysteresis loop and the substitution with incomplete, or partial clockwise hysteresis loops was observable only in the fourth stage of fruit growth. These results can be valuable for any smart fruit management of olive fruit production.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 131
Author(s):  
Matteo Zucchini ◽  
Arash Khosravi ◽  
Veronica Giorgi ◽  
Adriano Mancini ◽  
Davide Neri

The growth of cherry fruit is generally described using a double sigmoid model, divided into four growth stages. Abiotic factors are considered to be significant components in modifying fruit growth, and among these, the vapor pressure deficit (VPD) is deemed the most effective. In this study, we investigated sweet cherry fruit growth through the continuous, hourly monitoring of fruit transversal diameter over two consecutive years (2019 and 2020), from the beginning of the third stage to maturation (forth stage). Extensometers were used in the field and VPD was calculated from weather data. The fruit growth pattern up to the end of the third stage demonstrated three critical steps during non-rainy days: shrinkage, stabilization and expansion. In the third stage of fruit growth, a partial clockwise hysteresis curve of circadian growth, as a response to VPD, appeared on random days. The pattern of fruit growth during rainy days was not distinctive, but the amount and duration of rain caused a consequent decrease in the VPD and indirectly boosted fruit growth. At the beginning of the fourth stage, the circadian growth changed and the daily transversal diameter vs VPD formed fully clockwise hysteresis curves for most of this stage. Our findings indicate that hysteresis can be employed to evaluate the initial phenological phase of fruit maturation, as a fully clockwise hysteresis curve was observable only in the fourth stage of fruit growth. There are additional opportunities for its use in the management of fruit production, such as in precision fruit farming.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Siqing Zhang ◽  
Huan Liu ◽  
Jiuren Zhou ◽  
Yan Liu ◽  
Genquan Han ◽  
...  

AbstractHere we report the ZrOx-based negative capacitance (NC) FETs with 45.06 mV/decade subthreshold swing (SS) under ± 1 V VGS range, which can achieve new opportunities in future voltage-scalable NCFET applications. The ferroelectric-like behavior of the Ge/ZrOx/TaN capacitors is proposed to be originated from the oxygen vacancy dipoles. The NC effect of the amorphous HfO2 and ZrOx films devices can be proved by the sudden drop of gate leakage, the negative differential resistance (NDR) phenomenon, the enhancement of IDS and sub-60 subthreshold swing. 5 nm ZrOx-based NCFETs achieve a clockwise hysteresis of 0.24 V, lower than 60 mV/decade SS and an 12% IDS enhancement compared to the control device without ZrOx. The suppressed NC effect of Al2O3/HfO2 NCFET compared with ZrOx NCFET is related to the partial switching of oxygen vacancy dipoles in the forward sweeping due to negative interfacial dipoles at the Al2O3/HfO2 interface.


2021 ◽  
Vol 69 (1) ◽  
pp. 49-64
Author(s):  
Joanna P. Siwek ◽  
Wojciech Szymański ◽  
Janusz Siwek ◽  
Mirosław Żelazny ◽  
Mariusz Klimek

Abstract The study aimed to determine the linkage between soil exchangeable potassium (K+) concentration and stream water K+ concentration during rainfall and snowmelt events in small catchments with different land use (Carpathian Foothills, Poland). The complementary geochemical and hydrochemical approach used in the study produced new information on the role of particular soil horizons and contributing areas such as hillslope or riparian areas in K+ delivery to stream channels during events. Horizons lying above the nearly impermeable fragipan (Btx) play the most important role in the process of K+ influx to streams during most event types except snowmelts with frozen soils, in all the studied catchments. In the woodland catchment, rapid flushing of K+ from the topsoil Ah horizon with higher hydraulic conductivity (Ksat ) and higher exchangeable K+ concentrations than in the lying lower E horizon resulted in a clockwise hysteresis of K+ in stream water during most events. In agricultural catchments, changes in stream water K+ concentration during events were determined by distinct differences between soil exchangeable K+ concentrations on hillslopes and in riparian areas.


2020 ◽  
Author(s):  
Siqing Zhang ◽  
Huan Liu ◽  
Jiuren Zhou ◽  
Yan Liu ◽  
Genquan Han ◽  
...  

Abstract Here we report the ZrO2 - based Negative capacitance (NC) FETs with 45.06 mV/decade subthreshold swing (SS) under ±1 V V GS range, which can achieve new opportunities in furture voltage-scalable NCFET applications. The ferroelectric-like behavior of the Ge/ZrO2/TaN capacitors is proposed to be originated from the oxygen vacancy dipoles. The NC effect of the amorphous HfO2 and ZrO2 films devices can be proved by the sudden drop of gate leakage, the negative differential resistance (NDR) phenomenon, the enhancement of I DS and sub-60 subthreshold swing. 5 nm ZrO2 - based NCFETs achieve a clockwise hysteresis of of 0.24 V, lower than 60 mV/decade SS and an 12% I DS enhancement compared to the control device without ZrO2 . The suppressed NC effect of Al2O3/HfO2 NCFET compared with ZrO2 NCFET is related to the partical swiching of oxygen vacancy dipoles in the forward sweeping due to negative interfical dipoles at the Al2O3 /HfO2 interface.


2020 ◽  
Vol 17 (1) ◽  
pp. 85
Author(s):  
Nani Heryani ◽  
Hidayat Pawitan ◽  
Mohamad Yanuar Jarwadi Purwanto ◽  
Kasdi Subagyono

River nutrient loadings rates are frequently determined from discharge and hydrochemistry relationships using regression techniques. Unfortunately such methods as a conventional technique are inadequate for dealing with the problem such as differences in shape and direction of loop forming in individual and seasonal storms. Besides the relationships are nonlinear and time-dependent, they also varies from site to site. There is a currently method to study hysteresis between discharge and concentration of hydrochemistry. The relationship between discharge and solute concentration was investigated at Cakardipa catchment, Upper Ciliwung watershed, between the years of 2009-2010. The characteristics of the hysteresis loops were used to evaluate the temporal variation of the relative contribution to stream flow of source waters at Cakardipa Catchment including groundwater (CG), soil water (CSO), and rain water (CR). Chemical water analysis was carried out on 497 water samples on storm event. The chemical analysis of storm event of Februari 14, 2010 was carried out for the concentrations of K+, Ca2+, Mg2+, Na+, SiO2, SO42-NO3-, Cl-, and HCO3-. Results of the experiment showed that concentrations displayed circular hysteresis loops during the events, highlighting the complex relation among solutes and discharge during storm hydrographs. The solutes of K, Na, and Ca produced  concave curvature, anti-clockwise hysteresis loops, and positive  trend, so that classified as A2 loops with components ranking were CR> CG> CSO. .The solutes of Mg, SO4, NO3 assumed to come from groundwater produced convex curvature, clockwise hysteresis loops, and positive trend, indicating a concentration component ranking of CG > CR > CSO (C2 model). While Si and Cl produced clockwise hysteresis loops, indicating a concentration component ranking of CG> CSO> CR  which was C1 model.


2020 ◽  
Author(s):  
Amanda C. Northrop ◽  
Vanessa Avalone ◽  
Aaron M. Ellison ◽  
Bryan A. Ballif ◽  
Nicholas J. Gotelli

Incremental increases in a driver variable, such as nutrients or detritus, can trigger abrupt shifts in aquatic ecosys-tems. Once these ecosystems change state, a simple reduction in the driver variable may not return them to their original state. Because of the long time scales involved, we still have a poor understanding of the dynamics of ecosys-tem recovery after a state change. A model system for understanding ecosystem recovery is the aquatic microecosystem that inhabits the cup-shaped leaves of the pitcher plant Sarracenia purpurea. With enrichment of organic matter, this system flips within 1 to 3 days from an oxygen-rich state to an oxygen-poor (hypoxic) state. In a replicated green-house experiment, we enriched pitcher plant leaves at different rates with bovine serum albumin (BSA), a molecular substitute for detritus. Changes in dissolved oxygen ([O2]) and undigested BSA concentration were monitored during enrichment and recovery phases. At low enrichment rates, ecosystems showed a substantial lag in the recovery of [O2] (clockwise hysteresis). At intermediate enrichment rates, [O2] tracked the levels of undigested BSA with the same profile during the enrichment and recovery phases (no hysteresis). At high enrichment rates, we observed a novel response: changes in [O2] were proportionally larger during the recovery phase than during the enrichment phase (counter-clockwise hysteresis). These experiments demonstrate that detrital enrichment rate can modulate a diversity of hysteretic responses in a single aquatic ecosystem. With counter-clockwise hysteresis, rapid reduction of a driver variable following high enrichment rates may be a viable restoration strategy.


2020 ◽  
Author(s):  
Pierre Kabuya ◽  
Denis Hughes ◽  
Raphael Tshimanga ◽  
Mark Trigg

<p>Wetland processes considerably influence the flow regime of the downstream river channel, and are important to consider for a better representation of runoff generation within a basin scale hydrological model. The need to understand these processes lead to the development of a wetland sub-model for the monthly time step Pitman hydrological model. However, previous studies highlighted the need to provide guidance to explicitly estimate the wetland parameters rather than using a trial and error calibration approach. In this study, a 2D hydrodynamic river-wetland model (LISFLOOD-FP) is used to explicitly represent the inundation process exchanges between river channels and wetland systems and thereby inform the choice of Pitman wetland model parameters. The hysteretic patterns of these river-wetland processes are quantified through the use of hysteresis indices. Additionally, the hysteretic patterns are connected with the spill and return flow parameters of the wetland sub-model and eventually with the wetland morphometric characteristics. The results show that there is a consistent connection between the degree of hysteresis found in the channel-wetland exchange processes and the Pitman wetland parameters which are also explicitly linked to the wetland morphometric characteristics. The channel capacity to spill (Qcap) is consistently correlated with the hysteresis found between the channel inflow and the wetland storage volume. This anti-clockwise hysteresis represents the time delay between the inundation and drainage processes. The channel spill factor (QSF), in addition to the inundation processes, is also connected with the drainage processes represented by the wetland storage volume and channel outflow anti-clockwise hysteresis. On the other hand, the parameters of the return flow equation have shown a strong consistent relationship with the channel inflow-wetland storage hysteresis. It has also been observed that the wetland average surface slope and the proportion of the wetland storage below the channel banks are the morphometric characteristics that influence the spill and the return flow parameters of the Pitman wetland sub-model. This understanding has a practical advantage for the estimation of the Pitman wetland parameters in the many areas where it is not possible to run complex hydrodynamic models.</p>


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2497 ◽  
Author(s):  
Irma Ayes Rivera ◽  
Ana Claudia Callau Poduje ◽  
Jorge Molina-Carpio ◽  
José Max Ayala ◽  
Elisa Armijos Cardenas ◽  
...  

Fluvial sediment dynamics plays a key role in the Amazonian environment, with most of the sediments originating in the Andes. The Madeira River, the second largest tributary of the Amazon River, contributes up to 50% of its sediment discharge to the Atlantic Ocean, most of it provided by the Andean part of the Madeira basin, in particular the Beni River. In this study, we assessed the rainfall (R)-surface suspended sediment concentration (SSSC) and discharge (Q)-SSSC relationship at the Rurrenabaque station (200 m a.s.l.) in the Beni Andean piedmont (Bolivia). We started by showing how the R and Q relationship varies throughout the hydrological year (September to August), describing a counter-clockwise hysteresis, and went on to evaluate the R–SSSC and Q–SSSC relationships. Although no marked hysteresis is observed in the first case, a clockwise hysteresis is described in the second. In spite of this, the rating curve normally used ( SSSC = aQ b ) shows a satisfactory R2 = 0.73 (p < 0.05). With regard to water discharge components, a linear function relates the direct surface flow Qs–SSSC, and a hysteresis is observed in the relationship between the base flow Qb and SSSC. A higher base flow index (Qb/Q) is related to lower SSSC and vice versa. This article highlights the role of base flow on sediment dynamics and provides a method to analyze it through a seasonal empirical model combining the influence of both Qb and Qs, which could be employed in other watersheds. A probabilistic method to examine the SSSC relationship with R and Q is also proposed.


Sign in / Sign up

Export Citation Format

Share Document