scholarly journals A novel approach for the consideration of plastic material behavior in thermodynamic topology optimization

PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Miriam Kick ◽  
Philipp Junker
2018 ◽  
Vol 34 ◽  
pp. 01027 ◽  
Author(s):  
Iraj Toloue ◽  
Mohd Shahir Liew ◽  
I.S.H Harahap ◽  
H.E. Lee

All structures built within known seismically active regions are typically designed to endure earthquake forces. Despite advances in earthquake resistant structures, it can be inferred from hindsight that no structure is entirely immune to damage from earthquakes. Active vibration control systems, unlike the traditional methods which enlarge beams and columns, are highly effective countermeasures to reduce the effects of earthquake loading on a structure. It requires fast computation of nonlinear structural analysis in near time and has historically demanded advanced programming hosted on powerful computers. This research aims to develop a new approach for active vibration control of frames, which is applicable over both elastic and plastic material behavior. In this study, the Force Analogy Method (FAM), which is based on Hook’s Law is further extended using the Timoshenko element which considers shear deformations to increase the reliability and accuracy of the controller. The proposed algorithm is applied to a 2D portal frame equipped with linear actuator, which is designed based on full state Linear Quadratic Regulator (LQR). For comparison purposes, the portal frame is analysed by both the Euler Bernoulli and Timoshenko element respectively. The results clearly demonstrate the superiority of the Timoshenko element over Euler Bernoulli for application in nonlinear analysis.


Author(s):  
Philipp Junker ◽  
Daniel Balzani

AbstractWe present a novel approach to topology optimization based on thermodynamic extremal principles. This approach comprises three advantages: (1) it is valid for arbitrary hyperelastic material formulations while avoiding artificial procedures that were necessary in our previous approaches for topology optimization based on thermodynamic principles; (2) the important constraints of bounded relative density and total structure volume are fulfilled analytically which simplifies the numerical implementation significantly; (3) it possesses a mathematical structure that allows for a variety of numerical procedures to solve the problem of topology optimization without distinct optimization routines. We present a detailed model derivation including the chosen numerical discretization and show the validity of the approach by simulating two boundary value problems with large deformations.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


Author(s):  
G. Graham Chell ◽  
Yi-Der Lee ◽  
Stephen J. Hudak

Engineering critical assessments (ECAs) of cracked pipes increasingly involve situations of high strains (e.g., reeling and ratcheting fatigue), multiple loads (combined bending, axial forces, and internal pressure), and multi-axial stressing (due to pressure). In this paper, some of the implications of these loading conditions on ECAs are investigated by generating BS 7910 Level 3C Failure Assessment Diagrams (FADs) from the results of a large matrix of finite element analysis (FEA) J computations for circumferentially cracked pipes. The Level 3C (J-based) FADs (which provide the most accurate FAD approach to ECAs) are compared with the corresponding and more widely employed (but less accurate) Level 2B (material dependent) FADs in order to assess the accuracy of the latter. Use of FEA J solutions in a Level 3C FAD ensures that the effects of material behavior, load type, crack type, crack geometry, and pipe geometry are accurately captured whereas a Level 2B FAD only attempts to accurately capture the effects of material stress-strain behavior. It is demonstrated that under some circumstances a Level 2B assessment will result in non-conservative results compared to the corresponding Level 3C assessment. The current comparison between Levels 3C and 2B addresses the mechanics involved in these approaches and does not take into account the possible differing treatments of material property uncertainties on ECAs within the two approaches. Based on the current results, an efficient J formulation is described that facilitates the practical implementation of a J-based ECA. The novel approach used is based on determining material dependent shift factors that transform Level 3C FADs derived from the fully plastic components of J solutions into Level 3C FADs that represent J behaviors in the linear elastic and fully plastic regimes, and the transition region in-between. This new J formulation treats combined axial forces, pressure, and bending when applied proportionally or non-proportionally and forms the basis of the monotonic and cyclic crack tip driving forces employed in the program FlawPRO. This program performs comprehensive conventional and high strain J-based ECAs that involve reeling, arbitrary strain cycling, ratcheting fatigue, and ductile tearing that are equivalent to a Level 3C FAD approach.


Author(s):  
J. M. Stephan ◽  
C. Gourdin ◽  
J. Angles ◽  
S. Quilici ◽  
L. Jeanfaivre

The distribution of unsteady temperatures in the wall of the 6" FATHER mixing tee mock-up is calculated for a loading configuration: The results seem realistic even if they are not still very accurate (see paper PVP2005-71592 [11]). On this basis, thermal stresses are evaluated for elastic and elastic-plastic material behavior. Then, different types of fatigue criteria are used to evaluate the fatigue damage. The paper develops a brief description of the criteria, the corresponding fatigue damage evaluation and attempts to explain the differences.


Author(s):  
David J. Dewees ◽  
Phillip E. Prueter ◽  
Seetha Ramudu Kummari

Modeling of cyclic elastic-plastic material behavior (hardening) has been widely identified as a critical factor in the finite element (FE) simulation of weld residual stresses. The European Network on Neutron Techniques Standardization for Structural Integrity (NeT) Project has provided in recent years both standard test cases for simulation and measurement, as well as comprehensive material characterization. This has allowed the role of hardening in simulation predictions to be isolated and critically evaluated as never before possible. The material testing information is reviewed, and isotropic, nonlinear kinematic and combined hardening models are formulated and tested. Particular emphasis is placed on material model selection for general fitness-for-service assessments, as it relates to the guidance for weld residual stress (WRS) in flaw assessments of in-service equipment in Annex E of the FFS standard, API 579-1/ASME FFS-1.


1982 ◽  
Vol 104 (4) ◽  
pp. 325-329 ◽  
Author(s):  
P. G. Bergan ◽  
E. Mollestad

A method for analyzing the dynamic behavior of marine pipelines subjected to impact loads or sudden forced movements is outlined. Inertia forces (also from hydrodynamic mass), hydrodynamic drag forces as well as friction and lift effects for a pipe at the sea bottom are accounted for. An extensive nonlinear formulation is used for the pipe itself; it includes large displacements and elasto-plastic material behavior. Aspects of the numerical formulation of the problem and the solution of the nonlinear dynamic equations are discussed. The examples show computed dynamic response for pipelines lying on the sea floor and for a pipe section freely submerged in water when subjected to various force and displacement histories.


Author(s):  
Zijian Zhao ◽  
Abdel-Hakim Bouzid

Abstract SS316L finned tubes are becoming very popular in high-pressure gas exchangers and particularly in CO2 cooler applications. Due to the high-pressure requirement during operation, these tubes require an accurate residual stress evaluation during the expansion process. Indeed, die expansion of SS tubes creates not only high stresses when combined with operation stresses but also micro-cracks during expansion when the expansion process is not very well controlled. This research work aims at studying the elastic-plastic behavior and estimating the residual stress states by modeling the die expansion process. The stresses and deformations of the joint are analyzed numerically using the finite element method. The expansion and contraction process is modeled considering elastic-plastic material behavior for different die sizes. The maximum longitudinal, tangential and contact stresses are evaluated to verify the critical stress state of the joint during the expansion process. The importance of the material behavior in evaluating the residual stresses using kinematic and isotropic hardening is addressed.


1983 ◽  
Vol 50 (3) ◽  
pp. 561-565 ◽  
Author(s):  
Y. F. Dafalias

To illustate the effect of the choice of corotational rates at large plastic deformations, expressions for the stresses developing in large simple shear are obtained in closed analytical form under the assumptions of a rigid-plastic material response and a Mises type isotropically and kinematically hardening constitutive model for two different corotational rates applied to the stress and the back-stress tensors. The observed difference in the simple shear response and the relative merits of the foregoing and other corotational rates are discussed, and a novel approach is proposed based on Mandel’ work and the representation theorem for isotropic second-order antisymmetric tensor valued functions.


Sign in / Sign up

Export Citation Format

Share Document