Impact—Response Behavior of Offshore Pipelines

1982 ◽  
Vol 104 (4) ◽  
pp. 325-329 ◽  
Author(s):  
P. G. Bergan ◽  
E. Mollestad

A method for analyzing the dynamic behavior of marine pipelines subjected to impact loads or sudden forced movements is outlined. Inertia forces (also from hydrodynamic mass), hydrodynamic drag forces as well as friction and lift effects for a pipe at the sea bottom are accounted for. An extensive nonlinear formulation is used for the pipe itself; it includes large displacements and elasto-plastic material behavior. Aspects of the numerical formulation of the problem and the solution of the nonlinear dynamic equations are discussed. The examples show computed dynamic response for pipelines lying on the sea floor and for a pipe section freely submerged in water when subjected to various force and displacement histories.

Author(s):  
Tokihiro Katsui ◽  
Tomoya Inoue ◽  
Masanari Akashi

A ROV (Remotely Operated Vehicle) which has a crawler based driving system is considered to be one of the appropriate underwater vehicles for seafloor exploration or seabed resources development [1][2][3][4][5][6][7]. The crawler driven ROV is able to move on sea floor, stay on a fixed sea bottom location and is capable to do heavy works such as digging the seafloor. In order to utilize those capabilities, it is important to know the fundamental moving capability of crawler driven ROV. According to the previous investigations [8][9], the crawler driven ROVs are easy to run in bow-up attitude in some running conditions due to the buoyancy and the hydrodynamic forces acting on the ROV. This irregular running sometimes causes a turning over. Therefore, we have to know the restrictions on the design parameters of the ROV not to run in bow-up attitude to design the ROV. The authors have been investigating the moving capability of crawler driven ROV and showed a method to estimate the restrictions of design parameters to avoid the bow-up running, which is called normal running condition [10][11][12][13]. This method is based on a simple dynamic model which considers the forces acting on ROV as concentrated loads; those are gravity, buoyancy, reaction from the ground, thrust and hydrodynamic drag. The loading position of ground reaction in steady running is obtained from the balance condition of forces. We consider that the loading point of ground reaction should be inside between the fore and rear wheels for the normal running. This constrained condition indicates the relation between gravity and buoyancy center locations for the normal run of ROV under the given body geometry, weight, displacement and running speed. This method estimates the ROV’s running capability in acceptable accuracy compared with the model experiments. However, this method does not consider the tension of the cable which is connected to the ROV. As you can easily imagine, the cable tension has a big influence on the movable area of the ROV. If the ROV keeps going forward, it will turn over due to the tension of the cable at a certain point. We must know the movable area of the crawler driven ROV for the operation planning. The present study shows a method to estimate the movable area of the crawler driven ROV under the restriction of the cable by extending the previous method to estimate the normal running condition.


Author(s):  
Pavel A. Trapper

Abstract A simple 2D numerical model for pipeline and riser configuration analyses is presented. The model considers large deformations of the pipe, pipe-seabed contact detection, pipe’s interaction with uneven inelastic seabed, environmental loading such as drag forces applied by the ocean currents, water surface level variations and incorporation of buoyancy modules. The solution technique is based on a consistent minimization of the total potential energy of the deformed pipe discretized as a Riemann sum, which results in a system of nonlinear algebraic finite difference equations that is solved in an incremental/iterative manner. At each increment, the total potential energy is being updated, thus accounting for energy dissipation due to irrecoverable plastic deformation of the seabed and according to hydrodynamic drag forces. The whole pipe is treated as a single continuous segment. To demonstrate the method, examples with several riser configurations and pipe-lay scenarios are presented. It is shown how on-bottom unevenness, including pits and hills, incorporation of buoyancy modules and tidal effects can affect pipeline or riser configurations and their internal forces. Results are compared to those obtained with Abaqus and appear to be in an excellent agreement. The model presents simple and time-efficient way to analyze the pipe-lay or riser configurations with various boundary and loading conditions. The proposed model, contrary to commercial packages, which impose using time-consuming Graphical User Interface (GUI), allows for performing the series of analyses for varying geometric and/or material properties, and processing the results in reasonable time by single click.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

A simplified technique for determining the shakedown limit load of a structure employing an elastic-perfectly-plastic material behavior was previously developed and successfully applied to a long radius 90-degree pipe bend. The pipe bend is subjected to constant internal pressure and cyclic bending. The cyclic bending includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending moment loadings. The simplified technique utilizes the finite element method and employs small displacement formulation to determine the shakedown limit load without performing lengthy time consuming full cyclic loading finite element simulations or conventional iterative elastic techniques. In the present paper, the simplified technique is further modified to handle structures employing elastic-plastic material behavior following the kinematic hardening rule. The shakedown limit load is determined through the calculation of residual stresses developed within the pipe bend structure accounting for the back stresses, determined from the kinematic hardening shift tensor, responsible for the translation of the yield surface. The outcomes of the simplified technique showed very good correlation with the results of full elastic-plastic cyclic loading finite element simulations. The shakedown limit moments output by the simplified technique are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes. The generated shakedown diagrams are compared with the ones previously generated employing an elastic-perfectly-plastic material behavior. These indicated conservative shakedown limit moments compared to the ones employing the kinematic hardening rule.


2000 ◽  
Vol 203 (12) ◽  
pp. 1915-1923 ◽  
Author(s):  
L.L. Stelle ◽  
R.W. Blake ◽  
A.W. Trites

Drag forces acting on Steller sea lions (Eumetopias jubatus) were investigated from ‘deceleration during glide’ measurements. A total of 66 glides from six juvenile sea lions yielded a mean drag coefficient (referenced to total wetted surface area) of 0.0056 at a mean Reynolds number of 5.5×10(6). The drag values indicate that the boundary layer is largely turbulent for Steller sea lions swimming at these Reynolds numbers, which are past the point of expected transition from laminar to turbulent flow. The position of maximum thickness (at 34 % of the body length measured from the tip of the nose) was more anterior than for a ‘laminar’ profile, supporting the idea that there is little laminar flow. The Steller sea lions in our study were characterized by a mean fineness ratio of 5.55. Their streamlined shape helps to delay flow separation, reducing total drag. In addition, turbulent boundary layers are more stable than laminar ones. Thus, separation should occur further back on the animal. Steller sea lions are the largest of the otariids and swam faster than the smaller California sea lions (Zalophus californianus). The mean glide velocity of the individual Steller sea lions ranged from 2.9 to 3.4 m s(−)(1) or 1.2-1.5 body lengths s(−)(1). These length-specific speeds are close to the optimum swim velocity of 1.4 body lengths s(−)(1) based on the minimum cost of transport for California sea lions.


Author(s):  
Lauro Massao Yamada da Silveira ◽  
Rafael Loureiro Tanaka ◽  
Joa˜o Paulo Zi´lio Novaes

Despite global analysis of umbilicals is a well-known area in the offshore systems design, some topics are still opened for discussions. One of these topics refers to the structural damping. Obviously, the viscous damping caused by hydrodynamic drag forces is the major source of damping to the whole system. However, in some severe load cases, the host vessel dynamics may induce high snatch loads to the umbilical top end and these loads are more related to structural damping, specifically in tension–elongation hysteresis, than to viscous damping. The snatch loads must be taken into account in the whole design process, which leads to an umbilical designed to resist to higher tension loads and implies also, in most cases, in over-dimensioned accessories, such as the bending limiters. Actually, due to the high level of friction between layers, the umbilical presents some level of structural damping which is, in fact, related to hysteretic moment-curvature and tension-elongation relations. This intrinsic structural damping may in fact contribute to the reduction of the snatch loads and considering it may reduce the level of conservatism in the design. However, due to the complexity and diversity of umbilical designs, it is not straightforward to come up with general-use hysteretic curves. A simplification then is to apply classic Rayleigh damping. Typically, damping levels of 5% are accepted in the offshore industry when using stiffness-proportional Rayleigh damping (the 5% damping is a percentage of the critical damping and is accounted for at the regular wave period or irregular wave spectral peak period). The problem here is that stiffness-proportional Rayleigh damping increases linearly with the frequency and the damping level at 1Hz, for example, may get to 60%. This fact indicates that the high-frequency part of the response may be simply discarded from the results, which in turn may lead to an incorrect, over-damped analysis. The present work aims tackling the Rayleigh damping issue, evaluating its effects on tension levels and spectral density of the tension time history. A recommendation of how to apply Rayleigh damping is proposed.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 693
Author(s):  
Petar Trslić ◽  
Edin Omerdic ◽  
Gerard Dooly ◽  
Daniel Toal

This paper presents a docking station heave motion prediction method for dynamic remotely operated vehicle (ROV) docking, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). Due to the limited power onboard the subsea vehicle, high hydrodynamic drag forces, and inertia, work-class ROVs are often unable to match the heave motion of a docking station suspended from a surface vessel. Therefore, the docking relies entirely on the experience of the ROV pilot to estimate heave motion, and on human-in-the-loop ROV control. However, such an approach is not available for autonomous docking. To address this problem, an ANFIS-based method for prediction of a docking station heave motion is proposed and presented. The performance of the network was evaluated on real-world reference trajectories recorded during offshore trials in the North Atlantic Ocean during January 2019. The hardware used during the trials included a work-class ROV with a cage type TMS, deployed using an A-frame launch and recovery system.


1979 ◽  
Vol 22 (86) ◽  
pp. 67-81 ◽  
Author(s):  
V. L. Tsurikov

Abstract The different factors contributing to the formation of the gas porosity of sea ice are: (Ia) gases captured during the formation of the initial ice cover, (Ib) gases released from solution during the initial freezing of sea-water, (Ic) the inclusion of gases rising from the sea bottom, (2a) the substitution of gas for brine drained from the ice during times of melting, (2b) the release of gas from the brine within the ice during the course of partial freezing, and (2c) the formation of voids filled with water vapour during the course of internal melting. An analysis is made of each of these processes and it is concluded that processes Ib, 2a, and 2C are important. Process Ic may also be a major effect but it is difficult to evaluate until the rate of gas release from the sea floor is better known. The migration of air pockets into the ice from the overlying snow is shown to be a possible but not a significant effect. Available data on the composition of gas in sea ice are reviewed and it is shown to be significantly different from air. Possible causes for these differences are discussed. The porosity of sea ice, i.e. the total relative volume of its gas plus its brine inclusions, is one of the factors strongly affecting its strength, as has been shown by Tsurikov (1947) and by Weeks and Assur (1968). In seas with high salinities the effect of the presence of brine within the ice will usually be the dominant factor. However on water bodies with low salinities the effect of the gas included within the ice may be greater than the effect of the brine. Despite its significance there have not been any attempts at a quantitative analysis of the entrapment of gas in sea ice. This paper is an attempt at such a study.


Author(s):  
J. M. Stephan ◽  
C. Gourdin ◽  
J. Angles ◽  
S. Quilici ◽  
L. Jeanfaivre

The distribution of unsteady temperatures in the wall of the 6" FATHER mixing tee mock-up is calculated for a loading configuration: The results seem realistic even if they are not still very accurate (see paper PVP2005-71592 [11]). On this basis, thermal stresses are evaluated for elastic and elastic-plastic material behavior. Then, different types of fatigue criteria are used to evaluate the fatigue damage. The paper develops a brief description of the criteria, the corresponding fatigue damage evaluation and attempts to explain the differences.


Sign in / Sign up

Export Citation Format

Share Document