scholarly journals Recursion relations for hp ‐FEM Element Matrices on quadrilaterals

PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tim Haubold ◽  
Veronika Pillwein ◽  
Sven Beuchler
Keyword(s):  
1989 ◽  
Author(s):  
Harry Berryman ◽  
Joel Salz
Keyword(s):  

2020 ◽  
Vol 501 (1) ◽  
pp. L71-L75
Author(s):  
Cornelius Rampf ◽  
Oliver Hahn

ABSTRACT Perturbation theory is an indispensable tool for studying the cosmic large-scale structure, and establishing its limits is therefore of utmost importance. One crucial limitation of perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high orders in the vicinity of the first shell-crossing for random initial data in a realistic three-dimensional Universe. For this, we have numerically implemented the all-order recursion relations for the matter trajectories, from which the convergence of the LPT series at shell-crossing is established. Convergence studies performed at large orders reveal the nature of the convergence-limiting singularities. These singularities are not the well-known density singularities at shell-crossing but occur at later times when LPT already ceased to provide physically meaningful results.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Valery E. Lyubovitskij ◽  
Fabian Wunder ◽  
Alexey S. Zhevlakov

Abstract We discuss new ideas for consideration of loop diagrams and angular integrals in D-dimensions in QCD. In case of loop diagrams, we propose the covariant formalism of expansion of tensorial loop integrals into the orthogonal basis of linear combinations of external momenta. It gives a very simple representation for the final results and is more convenient for calculations on computer algebra systems. In case of angular integrals we demonstrate how to simplify the integration of differential cross sections over polar angles. Also we derive the recursion relations, which allow to reduce all occurring angular integrals to a short set of basic scalar integrals. All order ε-expansion is given for all angular integrals with up to two denominators based on the expansion of the basic integrals and using recursion relations. A geometric picture for partial fractioning is developed which provides a new rotational invariant algorithm to reduce the number of denominators.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Aidan Herderschee ◽  
Fei Teng

Abstract We continue the study of open associahedra associated with bi-color scattering amplitudes initiated in ref. [1]. We focus on the facet geometries of the open associahedra, uncovering many new phenomena such as fiber-product geometries. We then provide novel recursion procedures for calculating the canonical form of open associahedra, generalizing recursion relations for bounded polytopes to unbounded polytopes.


2014 ◽  
Vol 2014 ◽  
pp. 1-24 ◽  
Author(s):  
David W. Pravica ◽  
Njinasoa Randriampiry ◽  
Michael J. Spurr

The family ofnth orderq-Legendre polynomials are introduced. They are shown to be obtainable from the Jacobi theta function and to satisfy recursion relations and multiplicatively advanced differential equations (MADEs) that are analogues of the recursion relations and ODEs satisfied by thenth degree Legendre polynomials. Thenth orderq-Legendre polynomials are shown to have vanishingkth moments for0≤k<n, as does thenth degree truncated Legendre polynomial. Convergence results are obtained, approximations are given, a reciprocal symmetry is shown, and nearly orthonormal frames are constructed. Conditions are given under which a MADE remains a MADE under inverse Fourier transform. This is used to construct new wavelets as solutions of MADEs.


2021 ◽  
pp. 2150286
Author(s):  
Erhan Albayrak

The outcome of the random crystal field effects on the antiferromagnetic spin-1 Blume–Capel model and external magnetic field are examined on the Bethe Lattice in terms of exact recursion relations. It is assumed that the crystal field is either turned on or off randomly with probability [Formula: see text] and [Formula: see text], respectively. The phase diagrams are constructed from the thermal analysis of the order parameters with the coordination number [Formula: see text] which corresponds to honeycomb lattice. It is explored that the system goes both second- and first-order phase transitions, along with the reentrant behavior and a few critical points. The reentrant behavior is stronger for lower values of [Formula: see text] and disappears as [Formula: see text] gets closer to 1.0. The first-order lines are observed to be either linked to the tricritical points or decomposed. The critical end points and double critical points are also observed.


2016 ◽  
Vol 116 (4) ◽  
Author(s):  
Clifford Cheung ◽  
Karol Kampf ◽  
Jiri Novotny ◽  
Chia-Hsien Shen ◽  
Jaroslav Trnka

1969 ◽  
Vol 47 (12) ◽  
pp. 1263-1269 ◽  
Author(s):  
Robert E. Pugh

The surface terms arising from a shift of origin in divergent Feynman integrals are considered. Sum rules and recursion relations between these terms are derived for an arbitrary degree of divergence and tensor rank. These relations are explicitly solved for linear, quadratic, cubic, and quartic divergences.


2017 ◽  
Vol 33 (11) ◽  
pp. 1578-1586
Author(s):  
Xu Gao ◽  
Chuan Zhong Li ◽  
Jing Song He

Sign in / Sign up

Export Citation Format

Share Document