scholarly journals Efficient computation of coupled bending and torsion vibrations of slender structures with an axially moving eccentric load

PAMM ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Helmut J. Holl ◽  
Lukas Keplinger
10.1558/37291 ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 242-263
Author(s):  
Stefano Rastelli ◽  
Kook-Hee Gil

This paper offers a new insight into GenSLA classroom research in light of recent developments in the Minimalist Program (MP). Recent research in GenSLA has shown how generative linguistics and acquisition studies can inform the language classroom, mostly focusing on what linguistic aspects of target properties should be integrated as a part of the classroom input. Based on insights from Chomsky’s ‘three factors for language design’ – which bring together the Faculty of Language, input and general principles of economy and efficient computation (the third factor effect) for language development – we put forward a theoretical rationale for how classroom research can offer a unique environment to test the learnability in L2 through the statistical enhancement of the input to which learners are exposed.


Author(s):  
Gabriella Nehemy ◽  
Paulo Gonçalves ◽  
EDSON CAPELLO SOUSA

Author(s):  
Jéssica Carolina Barbosa Vieira ◽  
Thiago da Silva ◽  
Carlos Alberto Bavastri

2019 ◽  
Vol 13 (2) ◽  
pp. 213-221 ◽  
Author(s):  
Fang Guo ◽  
Fei Luo ◽  
Yu Liu ◽  
Yilin Wu

2020 ◽  
Vol 982 ◽  
pp. 201-206
Author(s):  
Jaksada Thumrongvut ◽  
Natthawat Pakwan ◽  
Samaporn Krathumklang

In this paper, the experimental study on the pultruded fiber-reinforced polymer (pultruded FRP) angle beams subjected to transversely eccentric load are presented. A summary of critical buckling load and buckling behavior for full-scale flexure tests with various span-to-width ratios (L/b) and eccentricities are investigated, and typical failure mode are identified. Three-point flexure tests of 50 pultruded FRP angle beams are performed. The E-glass fibre/polyester resin angle specimens are tested to examine the effect of span-to-width ratio of the beams on the buckling responses and critical buckling loads. The angle specimens have the cross-sectional dimension of 76x6.4 mm with span-to-width ratios, ranging from 20 to 40. Also, four different eccentricities are investigated, ranging from 0 to ±2e. Eccentric loads are applied below the horizontal flange in increments until beam buckling occurred. Based upon the results of this study, it is found that the load and mid-span vertical deflection relationships of the angle beams are linear up to the failure. In contrast, the load and mid-span lateral deflection relationships are geometrically nonlinear. The general mode of failure is the flexural-torsional buckling. The eccentrically loaded specimens are failed at critical buckling loads lower than their concentric counterparts. Also, the quantity of eccentricity increases as buckling load decreases. In addition, it is noticed that span-to-width ratio increases, the buckling load is decreased. The eccentric location proved to have considerable influence over the buckling load of the pultruded FRP angle beams.


2016 ◽  
Vol 63 (4) ◽  
pp. 1-60 ◽  
Author(s):  
Fedor V. Fomin ◽  
Daniel Lokshtanov ◽  
Fahad Panolan ◽  
Saket Saurabh

Sign in / Sign up

Export Citation Format

Share Document