scholarly journals Investigating the acoustical properties of carbon fiber-, glass fiber-, and hemp fiber-reinforced polyester composites

2014 ◽  
Vol 35 (11) ◽  
pp. 2103-2111 ◽  
Author(s):  
Mohammad Mehdi Jalili ◽  
Seyyed Yahya Mousavi ◽  
Amir Soheil Pirayeshfar
2017 ◽  
Vol 52 (9) ◽  
pp. 1183-1191 ◽  
Author(s):  
Asim Shahzad ◽  
Sana Ullah Nasir

Empirical model for predicting fatigue damage behavior of composite materials developed recently has been applied to composite materials made of different fibers in various configurations: carbon and glass fiber noncrimp fabric reinforced epoxy composites, chopped strand mat glass fiber-reinforced polyester composites, randomly oriented nonwoven hemp fiber-reinforced polyester composites, and glass/hemp fiber-reinforced polyester hybrid composites. The fatigue properties were evaluated in tension–tension mode at stress ratio R = 0.1 and frequency of 1 Hz. The experimental fatigue data were used to determine the material parameters required for the model. It has been found that the model accurately predicts the degradation of fatigue life of composites with an increase in number of fatigue cycles. The scope of applicability of this model has thus been broadened by using the fatigue data of natural fiber and noncrimp fabric composites.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 18
Author(s):  
Takahiro Wada ◽  
Hiroshi Churei ◽  
Mako Yokose ◽  
Naohiko Iwasaki ◽  
Hidekazu Takahashi ◽  
...  

Face guards (FGs) are protectors that allow for the rapid and safe return of athletes who are to play after sustaining traumatic facial injuries and orbital fractures. Current FGs require significant thickness to achieve sufficient shock absorption abilities. However, their weight and thickness render the FGs uncomfortable and reduce the field of vision of the athlete, thus hindering their performance. Therefore, thin and lightweight FGs are required. We fabricated FGs using commercial glass fiber-reinforced thermoplastic (GFRTP) and carbon fiber-reinforced thermoplastic (CFRTP) resins to achieve these requirements and investigated their shock absorption abilities through impact testing. The results showed that an FG composed of CFRTP is thinner and lighter than a conventional FG and has sufficient shock absorption ability. The fabrication method of an FG comprising CFRTP is similar to the conventional method. FGs composed of commercial FRTPs exhibit adequate shock absorption abilities and are thinner and lower in weight as compared to conventional FGs.


Sign in / Sign up

Export Citation Format

Share Document