Preparation and characterization of acrylonitrile-butadiene-styrene nanocomposites reinforced with cellulose nanocrystal via solution casting method

2015 ◽  
Vol 38 ◽  
pp. E167-E173 ◽  
Author(s):  
Libo Ma ◽  
Yang Zhang ◽  
Siqun Wang
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 558
Author(s):  
Thanida Charoensuk ◽  
Wannisa Thongsamrit ◽  
Chesta Ruttanapun ◽  
Pongsakorn Jantaratana ◽  
Chitnarong Sirisathitkul

Solution–processing methods were investigated as viable alternatives to produce the polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel auto-combustion method. While the ignition period in two synthesis batches varied, the morphology of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Compared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS composites. These composites have potential to be implemented in the additive manufacturing of rare-earth-free magnets.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
H. Somashekarappa ◽  
Y. Prakash ◽  
K. Hemalatha ◽  
T. Demappa ◽  
R. Somashekar

The aim of this present work is to investigate the effect of plasticizers like Sorbitol on microstructural and mechanical properties of hydroxypropyl methylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) blend films. The pure blend and plasticized blend films were prepared by solution casting method and investigated using wide angle X-ray scattering (WAXS) method. WAXS analysis confirms that the plasticizers can enter into macromolecular blend structure and destroy the crystallinity of the films. FTIR spectra show that there are a shift and decrease in the intensity of the peaks confirming the interaction of plasticizer with the blend. Mechanical properties like tensile strength and Young’s Modulus decrease up to 0.6% of Sorbitol content in the films. Percentage of elongation at break increases suggesting that the plasticized films are more flexible than pure blend films. These films are suitable to be used as environmental friendly and biodegradable packaging films.


2017 ◽  
Vol 101 ◽  
pp. 160-166 ◽  
Author(s):  
Marko Krstić ◽  
Marija Radojević ◽  
Dušica Stojanović ◽  
Vesna Radojević ◽  
Petar Uskoković ◽  
...  

e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


Sign in / Sign up

Export Citation Format

Share Document