scholarly journals Fabrication and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite

e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2399
Author(s):  
Bich Nam Jung ◽  
Hyun Wook Jung ◽  
DongHo Kang ◽  
Gi Hong Kim ◽  
Jin Kie Shim

Since the plastic-based multilayer films applied to food packaging are not recyclable, it is necessary to develop easily recyclable single materials. Herein, polypropylene (PP)-based cellulose nanofiber (CNF)/nanoclay nanocomposites were prepared by melt-mixing using a fixed CNF content of 1 wt %, while the nanoclay content varied from 1 to 5 wt %. The optimum nanoclay content in the PP matrix was found to be 3 wt % (PCN3), while they exhibited synergistic effects as a nucleating agent. PCN3 exhibited the best mechanical properties, and the tensile and flexural moduli were improved by 51% and 26%, respectively, compared to PP. In addition, the oxygen permeability was reduced by 28%, while maintaining the excellent water vapor permeability of PP. The improvement in the mechanical and barrier properties of PP through the production of PP/CNF/nanoclay hybrid nanocomposites suggested their possible application in the field of food packaging.


2020 ◽  
Vol 25 (2) ◽  
pp. 81
Author(s):  
Eti Indarti ◽  
Arisa Sri Marlita ◽  
Zaidiyah Zaidiyah

Production of Polylactic acid (PLA)/Polycaprolactone (PCL) bionanocomposite films with various ratios was done by adding nanocrystalline celullose (NCC) from oil palm empty fruit bunches (OPEFB) as a filler. The aim of the research was to find out the effect of PLA/PCL ratio on film thickness, transparency of bionanocomposite films and water vapor permeability or WVP of the film bionanocomposite with addition of the 3% NCC.  The PLA/PCL ratio are 1.0/0.0; 0.8/0.2; 0.6/0.4; 0.5/0.5; 0.4/0.6; 0.2/0.8; and 0.0/1.0, prepared with solvent casting method. Characterization of PLA/PCL bionanocomposites film performed was thickness, transparency test and water vapor permeability (WVP) test. The thickness of bionanocomposites film produced were around are about 0.036-0.053 mm, results show that the lower PLA/PCL ratio the thicker film obtained. The highest value of film transparency was obtained at a ratio of 1.0 / 0.0 (81.4% at a wavelength of 550 nm), the smaller the PLA / PCL ratio, the lower the value of transparency. The WVP value of PLA/PCL bionanocomposite films gives a lower value than the WVP value of pure PLA film and pure PCL film. The best WVP was obtained at a PLA/PCL ratio of 0.8/0.2 which was 1.49x10-16kg.m/(m2.s.Pa).  


Author(s):  
Mahbobeh Hassannia-Kolaee ◽  
Iman Shahabi-Ghahfarrokhi ◽  
Maryam Hassannia-Kolaee

AbstractNowadays, researchers have attracted to substitute petroleum-based materials by biopolymers due to limitation of petroleum resources and environmental concerns. Nano-fillers were used to reduce some drawbacks of biopolymers as packaging materials. Nanocomposite films composed of 5 % (wt% dry base) whey protein concentrate (WPC), 30 % glycerol, (1 %, 3 %, and 5 %) nano-SiO2(NS). The films were prepared by solution casting method. Tensile strength of WPC/NS nanocomposites increased around 50 % compared to WPC by increasing NS content up to 3 %. While elongation at break (EB) decreased around 20 % compared to WPC, simultaneously. But at high NS content (5 %), EB decreased to 17.93 %. Sensibility of WPC/NS nanocomposites film to water and water vapor permeability was decreased with increasing NS content up to 3 %. NS content was an effective factor on the color properties of the films. SEM micrographs revealed uniform distribution of NS into polymer matrix at low NS content. Consequently, crystallinity and thermal properties of the film were improved by adding NS content as compared to WPC film. It seems NS can improve some drawbacks of WPC such as mechanical weakness, hydrophilic properties as a packaging material and allowing the development of biodegradable bionanocomposite.


BioResources ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. 4748-4759
Author(s):  
Fen Yin ◽  
Xuejiao Zhang ◽  
Dongna Li ◽  
Xiaojun Ma

A green biocomposite of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) and cellulose aerogels was developed. Cellulose gel was prepared from NaOH/urea aqueous solution, and subsequent regenerating by Na2SO4 solution and freeze-drying resulted in porous cellulose aerogels. The P34HB/cellulose aerogel biocomposite was fabricated by immersion of porous cellulose in a polymer solution and hot-pressing. The morphology, crystallization, thermal, mechanical, and barrier properties (H2O) of biocomposite were investigated. The cellulose aerogels matrix exhibited a three-dimensional network structure with porosity and a wide pore size distribution, contributing to the change of the glass transition temperature and cold crystallization temperature of biocomposites. Compared with cellulose aerogels, the tensile strength and elongation at break of biocomposites were increased by as much as 48% and 25.1%, respectively. Moreover, biocomposites demonstrated an increased contact angle and water vapor permeability coefficient compared with the cellulose aerogel. The results revealed the potential of P34HB/cellulose aerogel biocomposites for practical application as packaging materials.


2013 ◽  
Vol 23 ◽  
pp. 7-15 ◽  
Author(s):  
Yern Chee Ching ◽  
Y. Yahya Rosiyah ◽  
Garlie Li

Polylactides (PLA) based composite films modified with nanoclay content ranges from 0-30 wt% were fabricated using solvent casting method and the mechanical properties, water vapor permeability, oxygen barrier, thermal stability and optical properties were studied. The study showed that the addition of up to 15 wt% of clay has caused a significant improvement of tensile strength of the PLA/nanoclay composite film. However, the further increasing of nanoclay content of >15 wt% of nanoclay has caused a significant reduction in tensile, elongation at break and optical properties of PLA matrix. Both the oxygen and water permeability of the PLA/nanoclay composite film decrease with the increasing of nanoclay contents. Greater water barrier properties would be achieved if the high nanoclay contents of 10-30 wt% were dispersed homogenous within the PLA matrix. The addition of nanoclay greater than 10 wt% affected the appearance of the film (i.e. increasing the haze and ΔE). Thermal analysis result has proved that the melting temperature, crystallization temperature and glass transition temperature of the composite film only slightly affected by the addition of nanoclay due to the immobilization polymer chain in the composite film.


2013 ◽  
Vol 25 ◽  
pp. 128-136 ◽  
Author(s):  
Ching Yern Chee ◽  
Y. Yahya Rosiyah ◽  
Garlie Li

Polylactides (PLA) based composite films modified with nanoclay content ranges from 0-30 wt% were fabricated using solvent casting method and the mechanical properties, water vapor permeability, oxygen barrier, thermal stability and optical properties were studied. The study showed that the addition of up to 15 wt% of clay has caused a significant improvement of tensile strength of the PLA/nanoclay composite film. However, the further increasing of nanoclay content of >15 wt% of nanoclay has caused a significant reduction in tensile, elongation at break and optical properties of PLA matrix. Both the oxygen and water permeability of the PLA/nanoclay composite film decrease with the increasing of nanoclay contents. Greater water barrier properties would be achieved if the high nanoclay contents of 10-30 wt% were dispersed homogenous within the PLA matrix. The addition of nanoclay greater than 10 wt% affected the appearance of the film (i.e. increasing the haze and ΔE). Thermal analysis result has proved that the melting temperature, crystallization temperature and glass transition temperature of the composite film only slightly affected by the addition of nanoclay due to the immobilization polymer chain in the composite film.


Author(s):  
Xinxin Liu ◽  
Xiaofeng Chen ◽  
Junli Ren ◽  
Chunhui Zhang

In order to improve the strength of PVA/xylan composite films and endow them with ultraviolet (UV) shielding ability, TiO2-KH550 nanoparticle was synthesized and added into the PVA/xylan matrix. The TiO2-KH550 nanoparticle dispersed well in the 0.04% sodium hexametaphosphate (SHMP) solution under ultrasonic and stirring treatments. Investigations on the properties of films showed that TiO2-KH550 had the positive impact on improving the strength, moisture and oxygen barrier properties of the composite films. The maximum tensile strength (27.3 MPa), the minimum water vapor permeability (2.75×10-11 g•m-1•s-1•Pa-1) and oxygen permeability (4.013 cm3•m-2•24h-1•0.1MPa-1) were obtained under the addition of 1.5% TiO2-KH550. The tensile strength of TiO2-KH550 reinforced composite film was increased by 70% than that of the pure PVA/xylan composite film, and the water vapor and oxygen permeability were decreased by 31% and 41%, respectively. Moreover, the UV transmittance of film at the wavelength of 400 nm was almost zero when adding 1.5~2.5% of TiO2-KH550, which indicated the PVA/xylan composite films were endowed with excellent UV light shielding ability.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1584
Author(s):  
Mónica Sánchez-Gutiérrez ◽  
Isabel Bascón-Villegas ◽  
Eduardo Espinosa ◽  
Elena Carrasco ◽  
Fernando Pérez-Rodríguez ◽  
...  

A biodegradable packaging film containing cellulose nanofibers from olive tree pruning, a by-product of olives production, was obtained using a solvent casting method. Nanocellulose was added to polyvinyl alcohol (PVA) to enhance the technological properties of the composite film as food packaging material. Nanocellulose was obtained from unbleached and bleached pulp through a mechanical and TEMPO pretreatment. Crystalline and chemical structure, surface microstructure, UV and gas barrier, optical, mechanical and antioxidant properties, as well as thermal stability were evaluated. Regarding optical properties, the UV barrier was increased from 6% for the pure PVA film to 50% and 24% for unbleached and bleached nanocellulose, respectively. The antioxidant capacity increased significantly in unbleached mechanical nanocellulose-films (5.3%) compared to pure PVA film (1.7%). In terms of mechanical properties, the tensile strength of the 5% unbleached mechanical nanocellulose films was significantly improved compared to the pure PVA film. Similarly, the 5% nanocellulose films had increased the thermal stability and improved barrier properties, reducing water vapor permeability by 38–59% and presenting an oxygen barrier comparable to aluminum layer and plastic films. Our results support the use of the developed films as a green alternative material for food packaging.


2021 ◽  
Vol 22 (7) ◽  
pp. 3346
Author(s):  
Agata Sommer ◽  
Paulina Dederko-Kantowicz ◽  
Hanna Staroszczyk ◽  
Sławomir Sommer ◽  
Marek Michalec

This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed—resulting in increased thermal stability and crystallinity of the material. The C2–C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups’ formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2018
Author(s):  
Muhammad Samsuri ◽  
Ihsan Iswaldi ◽  
Purba Purnama

Stereocomplexation is one of several approaches for improving polylactide (PLA) properties. The high molecular weight of poly L-lactide (PLLA) and poly D-lactide (PDLA) homopolymers are a constraint during the formation of stereocomplex PLAs (s-PLAs). The presence of s-PLA particles in PLA PLLA/PDLA blends can initiate the formation of s-PLA crystalline structures. We used the solution casting method to study the utilization of s-PLA materials from high molecular weight PLLA/PDLA blends for increasing s-PLA formation. The s-PLA particles initiated the formation of high molecular weight PLLA/PDLA blends, obtaining 49.13% s-PLA and 44.34% of the total crystalline fraction. In addition, the mechanical properties were enhanced through s-PLA crystalline formation and the increasing of total crystallinity of the PLLA/PDLA blends. The s-PLA particles supported initiation for s-PLA formation and acted as a nucleating agent for PLA homopolymers. These unique characteristics of s-PLA particles show potential to overcome the molecular weight limitation for stereocomplexation of PLLA/PDLA blends.


Sign in / Sign up

Export Citation Format

Share Document