Mechanistic aspects of silane coupling agents with different functionalities on reinforcement of silica-filled natural rubber compounds

2014 ◽  
Vol 55 (4) ◽  
pp. 836-842 ◽  
Author(s):  
Wisut Kaewsakul ◽  
Kannika Sahakaro ◽  
Wilma K. Dierkes ◽  
Jacques W.M. Noordermeer
2014 ◽  
Vol 87 (2) ◽  
pp. 291-310 ◽  
Author(s):  
W. Kaewsakul ◽  
K. Sahakaro ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT Polar functionality attached onto natural rubber has a significant impact on the reinforcing efficiency of silica. Parallel studies involving various levels of epoxidation on natural rubber (ENR) in the absence of bis-(triethoxysilylpropyl) tetrasulfide (TESPT) coupling agent, as well as a combination of ENRs with different loadings of TESPT, provide a better understanding of the various factors that influence the properties of silica-filled ENR compounds. Based on the overall properties, the best possible combination to optimize processability, to reduce filler–filler interaction, and improve vulcanization rate as well as vulcanizate properties, is to use ENR with an epoxide content in the range of 20–30 mol%, together with a small portion of TESPT, that is, 2–4 wt% relative to the silica content. This leads to a reduction of approximately 60–80% of TESPT when compared with the conventional NR compounds, where the optimal loading of TESPT was 9.0 wt% relative to the silica content.


2004 ◽  
Vol 94 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Hexiang Yan ◽  
Kang Sun ◽  
Yong Zhang ◽  
Yinxi Zhang ◽  
Yongzhong Fan

2017 ◽  
Vol 72 ◽  
pp. 70-74 ◽  
Author(s):  
Jing Sang ◽  
Sumio Aisawa ◽  
Katsuya Miura ◽  
Hidetoshi Hirahara ◽  
Oravec Jan ◽  
...  

2016 ◽  
Vol 23 (4) ◽  
pp. 357-362
Author(s):  
Omar A. Al-Hartomy ◽  
Ahmed A. Al-Ghamdi ◽  
Said A. Farha Al Said ◽  
Nikolay Dishovsky ◽  
Mihail Mihaylov

AbstractThe aim of the present article is to investigate the influence of the amount of bis(triethoxysilylpropyl) tetrasulfide on the curing characteristics and mechanical and dynamic properties of rubber composites based on epoxidized natural rubber (Epoxyprene 50) filled with 70 phr silica. The obtained results showed that although the interaction between the epoxy groups of epoxidized natural rubber and the silanol groups of silica through hydrogen bonds improves the dispersion of filler in the rubber matrix, the presence of silane coupling agents is necessary to obtain rubber compounds and vulcanizates with good vulcanization characteristics and mechanical and dynamic properties.


2013 ◽  
Vol 86 (2) ◽  
pp. 313-329 ◽  
Author(s):  
W. Kaewsakul ◽  
K. Sahakaro ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The rubber formulation plays a significant role in the properties of NR compounds filled with silica. In this work, the influences of various silicas, silane coupling agents, and diphenylguanidine (DPG) on the properties of compounds and vulcanizates—that is, cure characteristics, Mooney viscosity, flocculation kinetics, bound rubber content, Payne effect, tan δ at 60°C, tensile properties, and tear properties—are investigated. The results demonstrate that compound viscosity and curing behavior, as well as vulcanizate properties of the silica-filled NR, are much improved by incorporating silane coupling agents. Bis-triethoxysilylpropyltetrasulfide clearly gives better overall properties than the disulfide-based silane bis-triethoxysilylpropyldisulfide, except for scorch safety. DPG acts as a synergist to sulfenamide primary accelerators, as well as activator for the silanization reaction. Highly dispersible (HD) silicas can significantly enhance the degree of dispersion and so lead to higher filler–rubber interaction. As a consequence, the HD silicas provide better dynamic and mechanical properties for filled NR vulcanizates compared with conventional counterparts. The optimal quantities of both silane coupling agent and DPG required in the formulation are correlated to the cetyl trimethylammonium bromide specific surface area of the silicas. Furthermore, the results reveal that the silica structure as characterized by the dibutylphthalate adsorption also strongly influences the reinforcing efficiency.


Sign in / Sign up

Export Citation Format

Share Document