Influence of the silica content on rheological behaviour and cure characteristics of silica-filled styrene-butadiene rubber compounds

2001 ◽  
Vol 50 (5) ◽  
pp. 524-530 ◽  
Author(s):  
Sung-Seen Choi
2015 ◽  
Vol 815 ◽  
pp. 24-28
Author(s):  
N.R. Munirah ◽  
N.Z. Noriman ◽  
M.Z. Salihin ◽  
H. Kamarudin ◽  
M.H. Fatin ◽  
...  

The role of activated carbon (AC) in rubber compounds was investigated to better understand the reinforcing mechanism. The activated carbon filled styrene butadiene rubber vulcanizates (SBR-AC) using bamboo activated carbon as filler were prepared by using two-roll mill and cured at 160 °C. AC filler loading from 10 to 50 phr (part per hundred rubber) were used in this study. Study into the influences of filler loading on the cure characteristics, swelling behaviour and physical properties (hardness and resilience) of SBR-AC vulcanizates were carried out. It was observed that SBR-AC vulcanizates has better cure characteristics compared to the styrene butadiene rubber gum vulcanizate (SBR-GV) which is a non-filled vulcanizate. The results showed that the scorch time (ts2) decreased with increasing filler loading. The cure time (tc90) slightly decreased up to 20 phr before a rise as the filler loading increased. The minimum torque (ML) of SBR vulcanizate increased and the maximum torque (MH) decreased up to 20 phr but then increased with increasing filler loading. The cure rate index (CRI) of SBR-GV vulcanizate was higher than that of all SBR-AC vulcanizates. Up to 20 phr of filler loading, the CRI increased before a decline occurred as the filler loading increased. As expected, the hardness value of SBR-AC vulcanizates was higher compared to SBR-GV vulcanizate which has lower resilience. The hardness and crosslink density showed an increasing trend meanwhile the resilience was adversely affected by the increase in filler loading. Bamboo activated carbon showed some potential enhancement on the reinforcing and physical properties of the vulcanizates.


2015 ◽  
Vol 3 (4) ◽  
pp. 1-5
Author(s):  
Indra Surya ◽  
Syahrul Fauzi Siregar

By using a semi-efficient vulcanization system, the cure characteristics and crosslink density of natural rubber/styrene butadiene rubber (NR/SBR) blends were studied with a blend ratio from 0 to 100% rubber. The scorch time, optimum cure time, and torque difference value of the blended rubber compounds were determined by using the Moving-Die Rheometer (MDR 2000). The crosslink density was determined by the Flory—Rehner approach. Results indicate that the scorch and cure times, ts2 and t90, of the NR/SBR blends increased with increasing the SBR content. Whilst, the maximum values of torque difference and crosslink density were performed by the NR/SBR blend with a blend ratio of 75/25.


2020 ◽  
Vol 39 (1) ◽  
pp. 81-90
Author(s):  
An Zhao ◽  
Xuan-Yu Shi ◽  
Shi-Hao Sun ◽  
Hai-Mo Zhang ◽  
Min Zuo ◽  
...  

1999 ◽  
Vol 35 (9) ◽  
pp. 1687-1693 ◽  
Author(s):  
N.S. Saxena ◽  
P. Pradeep ◽  
G. Mathew ◽  
S. Thomas ◽  
M. Gustafsson ◽  
...  

2018 ◽  
Vol 197 ◽  
pp. 12006 ◽  
Author(s):  
Indra Surya ◽  
Hanafi Ismail

By using a semi-efficient sulphur vulcanisation system, the effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and tensile properties of carbon black (CB)-filled styrene-butadiene rubber (SBR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and added into the CB-filled SBR compounds. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK decreased the scorch and cure times of the CB-filled SBR compounds. ALK also improved the tensile modulus and tensile strength; especially up to a 5.0 phr of loading. The crosslink density measurement proved that the 5.0 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength. Due to its plasticity effect, ALK increased the elongation at break of the CB-filled SBR vulcanisates.


2002 ◽  
Vol 18 (4) ◽  
pp. 283-296 ◽  
Author(s):  
T.D. Sreeja ◽  
S.K.N. Kutty

The cure characteristics and mechanical properties of short nylon fiber – styrene butadiene rubber/whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.


Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 767 ◽  
Author(s):  
Dániel Simon ◽  
István Halász ◽  
József Karger-Kocsis ◽  
Tamás Bárány

Because of the chemically crosslinked 3D molecular structure of rubbers, their recycling is a challenging task, especially when cost efficiency is also considered. One of the most straightforward procedures is the grinding of discarded rubber products with subsequent devulcanization. The devulcanized rubber can be used as a feedstock for fresh rubber compounds or can be blended with uncured virgin rubber and thermoplastic polymers to form thermoplastic dynamic vulcanizates (TDVs). TDVs combine the beneficial (re)processability of thermoplastics and the elastic properties of rubbers. Our current work focuses on the development of polypropylene (PP)-based TDVs with the use of a tire model rubber (MR) composed of natural rubber (NR) and styrene-butadiene rubber (SBR) in a ratio of 70/30. The research target was the partial substitution of the above fresh MR by microwave devulcanized crumb rubber (dCR). TDVs were produced by continuous extrusion, and the effects of composition (PP/MR/dCR = 40/60/0…50/35/15) and processing parameters (different screw configurations, temperature profiles, the feeding method of PP) were investigated. Results showed that the fresh rubber compound can be replaced up to 10 wt % without compromising the mechanical properties of the resulting TDV.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1723 ◽  
Author(s):  
Magdalena Maciejewska ◽  
Anna Sowińska ◽  
Judyta Kucharska

Organic zinc salts and complexes were applied as activators for sulfur vulcanization of styrene–butadiene elastomer (SBR) in order to reduce the content of zinc ions in rubber compounds as compared with conventionally used zinc oxide. In this article, the effects of different organic zinc activators on the curing characteristics, crosslink densities, and mechanical properties of SBR as well as the aging resistance and thermal behavior of vulcanizates are discussed. Organic zinc salts seem to be good substitutes for zinc oxide as activators for sulfur vulcanization of SBR rubber, without detrimental effects to the vulcanization time and temperature. Moreover, vulcanizates containing organic zinc salts exhibit higher tensile strength and better damping properties than vulcanizate crosslinked with zinc oxide. The application of organic zinc activators allows the amount of zinc ions in SBR compounds to be reduced by 70–90 wt % compared to vulcanizate with zinc oxide. This is very important for ecological reasons, since zinc oxide is classified as being toxic to aquatic species.


Sign in / Sign up

Export Citation Format

Share Document