Light absorption and many-particle electron-phonon interactions in intermediate band quantum well solar cells

2014 ◽  
Vol 23 (10) ◽  
pp. 1238-1249 ◽  
Author(s):  
Frank Milde ◽  
Carsten Weber ◽  
Andreas Knorr
2021 ◽  
pp. 413495
Author(s):  
Hassan Abboudi ◽  
Haddou El Ghazi ◽  
Farid Benhaddou ◽  
Redouane En-Nadir ◽  
Anouar Jorio ◽  
...  

2008 ◽  
Author(s):  
Jessica Adams ◽  
Ravin Ginige ◽  
James Connolly ◽  
Ian Ballard ◽  
Benjamin Browne ◽  
...  

2021 ◽  
Vol 5 (4) ◽  
pp. 1171-1183 ◽  
Author(s):  
Alessio Dessì ◽  
Dimitris A. Chalkias ◽  
Stefania Bilancia ◽  
Adalgisa Sinicropi ◽  
Massimo Calamante ◽  
...  

In this paper, we present the design and synthesis of three organic dyes specially developed for the fabrication of dye-sensitized solar cells with potential application in greenhouses cladding.


Author(s):  
Adi Prasetio ◽  
Soyeon Kim ◽  
Muhammad Jahandar ◽  
Dong Chan Lim

AbstractIncorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and Jsc to 17.67 mA cm−2, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 344
Author(s):  
Yasushi Shoji ◽  
Ryo Tamaki ◽  
Yoshitaka Okada

From the viewpoint of band engineering, the use of GaSb quantum nanostructures is expected to lead to highly efficient intermediate-band solar cells (IBSCs). In IBSCs, current generation via two-step optical excitations through the intermediate band is the key to the operating principle. This mechanism requires the formation of a strong quantum confinement structure. Therefore, we focused on the material system with GaSb quantum nanostructures embedded in AlGaAs layers. However, studies involving crystal growth of GaSb quantum nanostructures on AlGaAs layers have rarely been reported. In our work, we fabricated GaSb quantum dots (QDs) and quantum rings (QRs) on AlGaAs layers via molecular-beam epitaxy. Using the Stranski–Krastanov growth mode, we demonstrated that lens-shaped GaSb QDs can be fabricated on AlGaAs layers. In addition, atomic force microscopy measurements revealed that GaSb QDs could be changed to QRs under irradiation with an As molecular beam even when they were deposited onto AlGaAs layers. We also investigated the suitability of GaSb/AlGaAs QDSCs and QRSCs for use in IBSCs by evaluating the temperature characteristics of their external quantum efficiency. For the GaSb/AlGaAs material system, the QDSC was found to have slightly better two-step optical excitation temperature characteristics than the QRSC.


Sign in / Sign up

Export Citation Format

Share Document