How can plant virus satellite RNAs alter the effects of plant virus infection? A study of the changes in the Nicotiana benthamiana proteome after infection by Peanut stunt virus in the presence or absence of its satellite RNA

PROTEOMICS ◽  
2013 ◽  
Vol 13 (14) ◽  
pp. 2162-2175 ◽  
Author(s):  
Aleksandra Obrępalska-Stęplowska ◽  
Przemysław Wieczorek ◽  
Marta Budziszewska ◽  
Arnika Jeszke ◽  
Jenny Renaut
Viruses ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 449 ◽  
Author(s):  
Aleksandra Obrępalska-Stęplowska ◽  
Agnieszka Zmienko ◽  
Barbara Wrzesińska ◽  
Michal Goralski ◽  
Marek Figlerowicz ◽  
...  

Peanut stunt virus (PSV) is a widespread pathogen infecting legumes. The PSV strains are classified into four subgroups and some are defined by the association of satellite RNAs (satRNAs). In the case of PSV, the presence of satRNAs alters the symptoms of disease in infected plants. In this study, we elucidated the plant response to PSV-G strain, which occurs in natural conditions without satRNA. However, it was found that it might easily acquire satRNA, which exacerbated pathogenesis in Nicotiana benthamiana. To explain the mechanisms underlying PSV infection and symptoms exacerbation caused by satRNA, we carried out transcriptome profiling of N. benthamiana challenged by PSV-G and satRNA using species-specific microarrays. Co-infection of plants with PSV-G + satRNA increased the number of identified differentially expressed genes (DEGs) compared with the number identified in PSV-G-infected plants. In both treatments, the majority of up-regulated DEGs were engaged in translation, ribosome biogenesis, RNA metabolism, and response to stimuli, while the down-regulated DEGs were required for photosynthesis. The presence of satRNA in PSV-G-infected plants caused different trends in expression of DEGs associated with phosphorylation, ATP binding, and plasma membrane.


Author(s):  
Barbara Wrzesińska ◽  
Agnieszka Zmienko ◽  
Lam Dai Vu ◽  
Ive De Smet ◽  
Aleksandra Obrępalska-Stęplowska

Abstract Key message PSV infection changed the abundance of host plant’s transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Abstract Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)–Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The ‘omic’ results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)–seq data were obtained to provide new insights into PSV-P–satRNA–plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.


2016 ◽  
Vol 7 ◽  
Author(s):  
Aleksandra Obrępalska-Stęplowska ◽  
Jenny Renaut ◽  
Sebastien Planchon ◽  
Arnika Przybylska ◽  
Przemysław Wieczorek ◽  
...  

2015 ◽  
Vol 6 ◽  
Author(s):  
Aleksandra Obrępalska-Stęplowska ◽  
Jenny Renaut ◽  
Sebastien Planchon ◽  
Arnika Przybylska ◽  
Przemysław Wieczorek ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Weiran Zheng ◽  
Haichao Hu ◽  
Qisen Lu ◽  
Peng Jin ◽  
Linna Cai ◽  
...  

Recent studies have shown that a large number of long noncoding RNAs (lncRNAs) can regulate various biological processes in animals and plants. Although lncRNAs have been identified in many plants, they have not been reported in the model plant Nicotiana benthamiana. Particularly, the role of lncRNAs in plant virus infection remains unknown. In this study, we identified lncRNAs in N. benthamiana response to Chinese wheat mosaic virus (CWMV) infection by RNA sequencing. A total of 1175 lncRNAs, including 65 differentially expressed lncRNAs, were identified during CWMV infection. We then analyzed the functions of some of these differentially expressed lncRNAs. Interestingly, one differentially expressed lncRNA, XLOC_006393, was found to participate in CWMV infection as a precursor to microRNAs in N. benthamiana. These results suggest that lncRNAs play an important role in the regulatory network of N. benthamiana in response to CWMV infection.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1546
Author(s):  
Marta Budziszewska ◽  
Patryk Frąckowiak ◽  
Aleksandra Obrępalska-Stęplowska

Bradysia species, commonly known as fungus gnats, are ubiquitous in greenhouses, nurseries of horticultural plants, and commercial mushroom houses, causing significant economic losses. Moreover, the insects from the Bradysia genus have a well-documented role in plant pathogenic fungi transmission. Here, a study on the potential of Bradysia impatiens to acquire and transmit the peanut stunt virus (PSV) from plant to plant was undertaken. Four-day-old larvae of B. impatiens were exposed to PSV-P strain by feeding on virus-infected leaves of Nicotiana benthamiana and then transferred to healthy plants in laboratory conditions. Using the reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR (RT-qPCR), and digital droplet PCR (RT-ddPCR), the PSV RNAs in the larva, pupa, and imago of B. impatiens were detected and quantified. The presence of PSV genomic RNA strands as well as viral coat protein in N. benthamiana, on which the viruliferous larvae were feeding, was also confirmed at the molecular level, even though the characteristic symptoms of PSV infection were not observed. The results have shown that larvae of B. impatiens could acquire the virus and transmit it to healthy plants. Moreover, it has been proven that PSV might persist in the insect body transstadially. Although the molecular mechanisms of virion acquisition and retention during insect development need further studies, this is the first report on B. impatiens playing a potential role in plant virus transmission.


2007 ◽  
Vol 104 (26) ◽  
pp. 11115-11120 ◽  
Author(s):  
S. H. Kim ◽  
S. MacFarlane ◽  
N. O. Kalinina ◽  
D. V. Rakitina ◽  
E. V. Ryabov ◽  
...  

2013 ◽  
Vol 4 ◽  
Author(s):  
Jean-François Laliberté ◽  
Peter Moffett ◽  
Hélène Sanfaçon ◽  
Aiming Wang ◽  
Richard S. Nelson ◽  
...  

2017 ◽  
Vol 61 (04) ◽  
pp. 492-494 ◽  
Author(s):  
Z. VOZÁROVÁ ◽  
M. GLASA ◽  
Z. W. ŠUBR

Sign in / Sign up

Export Citation Format

Share Document