Monitoring photopolymerization reactions through thermal imaging: A unique tool for the real-time follow-up of thick samples, 3D printing, and composites

2018 ◽  
Vol 56 (8) ◽  
pp. 889-899 ◽  
Author(s):  
Patxi Garra ◽  
Aude-Héloïse Bonardi ◽  
Alexandre Baralle ◽  
Assi Al Mousawi ◽  
Fabien Bonardi ◽  
...  
2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Marcin Sokołowski ◽  
Katarzyna Małek ◽  
Lech W. Piotrowski ◽  
Grzegorz Wrochna

The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments.


Cardiology ◽  
2016 ◽  
Vol 135 (4) ◽  
pp. 255-261 ◽  
Author(s):  
Peng Liu ◽  
Rijing Liu ◽  
Yan Zhang ◽  
Yingfeng Liu ◽  
Xiaoming Tang ◽  
...  

Aims and Objectives: The objective of this study was to assess the clinical feasibility of generating 3D printing models of left atrial appendage (LAA) using real-time 3D transesophageal echocardiogram (TEE) data for preoperative reference of LAA occlusion. Background: Percutaneous LAA occlusion can effectively prevent patients with atrial fibrillation from stroke. However, the anatomical structure of LAA is so complicated that adequate information of its structure is essential for successful LAA occlusion. Emerging 3D printing technology has the demonstrated potential to structure more accurately than conventional imaging modalities by creating tangible patient-specific models. Typically, 3D printing data sets are acquired from CT and MRI, which may involve intravenous contrast, sedation, and ionizing radiation. It has been reported that 3D models of LAA were successfully created by the data acquired from CT. However, 3D printing of the LAA using real-time 3D TEE data has not yet been explored. Methods: Acquisition of 3D transesophageal echocardiographic data from 8 patients with atrial fibrillation was performed using the Philips EPIQ7 ultrasound system. Raw echocardiographic image data were opened in Philips QLAB and converted to ‘Cartesian DICOM' format and imported into Mimics® software to create 3D models of LAA, which were printed using a rubber-like material. The printed 3D models were then used for preoperative reference and procedural simulation in LAA occlusion. Results: We successfully printed LAAs of 8 patients. Each LAA costs approximately CNY 800-1,000 and the total process takes 16-17 h. Seven of the 8 Watchman devices predicted by preprocedural 2D TEE images were of the same sizes as those placed in the real operation. Interestingly, 3D printing models were highly reflective of the shape and size of LAAs, and all device sizes predicted by the 3D printing model were fully consistent with those placed in the real operation. Also, the 3D printed model could predict operating difficulty and the presence of a peridevice leak. Conclusions: 3D printing of the LAA using real-time 3D transesophageal echocardiographic data has a perfect and rapid application in LAA occlusion to assist with physician planning and decision making.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Author(s):  
Claudio Urbani ◽  
Francesca Dassie ◽  
Benedetta Zampetti ◽  
Di Certo Agostino Maria ◽  
Renato Cozzi ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 67-LB
Author(s):  
JAN SOUPAL ◽  
JOHN J. ISITT ◽  
GEORGE GRUNBERGER ◽  
MARTIN PRAZNY ◽  
CHRISTOPHER PARKIN ◽  
...  

Author(s):  
Jiyang Yu ◽  
Dan Huang ◽  
Siyang Zhao ◽  
Nan Pei ◽  
Huixia Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document