Erratum to: Gas‐phase chemistry and reactive‐ion etching kinetics for silicon‐based materials in C 4 F 8  + O 2  + Ar plasma

Author(s):  
Byung J. Lee ◽  
Alexander Efremov ◽  
Kwang‐Ho Kwon
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1595
Author(s):  
Nomin Lim ◽  
Yeon Sik Choi ◽  
Alexander Efremov ◽  
Kwang-Ho Kwon

This research work deals with the comparative study of C6F12O + Ar and CF4 + Ar gas chemistries in respect to Si and SiO2 reactive-ion etching processes in a low power regime. Despite uncertain applicability of C6F12O as the fluorine-containing etchant gas, it is interesting because of the liquid (at room temperature) nature and weaker environmental impact (lower global warming potential). The combination of several experimental techniques (double Langmuir probe, optical emission spectroscopy, X-ray photoelectron spectroscopy) allowed one (a) to compare performances of given gas systems in respect to the reactive-ion etching of Si and SiO2; and (b) to associate the features of corresponding etching kinetics with those for gas-phase plasma parameters. It was found that both gas systems exhibit (a) similar changes in ion energy flux and F atom flux with variations on input RF power and gas pressure; (b) quite close polymerization abilities; and (c) identical behaviors of Si and SiO2 etching rates, as determined by the neutral-flux-limited regime of ion-assisted chemical reaction. Principal features of C6F12O + Ar plasma are only lower absolute etching rates (mainly due to the lower density and flux of F atoms) as well as some limitations in SiO2/Si etching selectivity.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1432
Author(s):  
Alexander Efremov ◽  
Byung Jun Lee ◽  
Kwang-Ho Kwon

This work summarizes the results of our previous studies related to investigations of reactive ion etching kinetics and mechanisms for widely used silicon-based materials (SiC, SiO2, and SixNy) as well as for the silicon itself in multi-component fluorocarbon gas mixtures. The main subjects were the three-component systems composed either by one fluorocarbon component (СF4, C4F8, CHF3) with Ar and O2 or by two fluorocarbon components with one additive gas. The investigation scheme included plasma diagnostics by Langmuir probes and model-based analysis of plasma chemistry and heterogeneous reaction kinetics. The combination of these methods allowed one (a) to figure out key processes which determine the steady-state plasma parameters and densities of active species; (b) to understand relationships between processing conditions and basic heterogeneous process kinetics; (c) to analyze etching mechanisms in terms of process-condition-dependent effective reaction probability and etching yield; and (d) to suggest the set gas-phase-related parameters (fluxes and flux-to-flux ratios) to control the thickness of the fluorocarbon polymer film and the change in the etching/polymerization balance. It was shown that non-monotonic etching rates as functions of gas mixing ratios may result from monotonic but opposite changes in F atoms flux and effective reaction probability. The latter depends either on the fluorocarbon film thickness (in high-polymerizing and oxygen-less gas systems) or on heterogeneous processes with a participation of O atoms (in oxygen-containing plasmas). It was suggested that an increase in O2 fraction in a feed gas may suppress the effective reaction probability through decreasing amounts of free adsorption sites and oxidation of surface atoms.


2019 ◽  
Vol 12 (3) ◽  
pp. 1209-1225 ◽  
Author(s):  
Christoph A. Keller ◽  
Mat J. Evans

Abstract. Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models are numerically intense, and previous attempts to reduce the numerical cost of chemistry solvers have not delivered transformative change. We show here the potential of a machine learning (in this case random forest regression) replacement for the gas-phase chemistry in atmospheric chemistry transport models. Our training data consist of 1 month (July 2013) of output of chemical conditions together with the model physical state, produced from the GEOS-Chem chemistry model v10. From this data set we train random forest regression models to predict the concentration of each transported species after the integrator, based on the physical and chemical conditions before the integrator. The choice of prediction type has a strong impact on the skill of the regression model. We find best results from predicting the change in concentration for long-lived species and the absolute concentration for short-lived species. We also find improvements from a simple implementation of chemical families (NOx = NO + NO2). We then implement the trained random forest predictors back into GEOS-Chem to replace the numerical integrator. The machine-learning-driven GEOS-Chem model compares well to the standard simulation. For ozone (O3), errors from using the random forests (compared to the reference simulation) grow slowly and after 5 days the normalized mean bias (NMB), root mean square error (RMSE) and R2 are 4.2 %, 35 % and 0.9, respectively; after 30 days the errors increase to 13 %, 67 % and 0.75, respectively. The biases become largest in remote areas such as the tropical Pacific where errors in the chemistry can accumulate with little balancing influence from emissions or deposition. Over polluted regions the model error is less than 10 % and has significant fidelity in following the time series of the full model. Modelled NOx shows similar features, with the most significant errors occurring in remote locations far from recent emissions. For other species such as inorganic bromine species and short-lived nitrogen species, errors become large, with NMB, RMSE and R2 reaching >2100 % >400 % and <0.1, respectively. This proof-of-concept implementation takes 1.8 times more time than the direct integration of the differential equations, but optimization and software engineering should allow substantial increases in speed. We discuss potential improvements in the implementation, some of its advantages from both a software and hardware perspective, its limitations, and its applicability to operational air quality activities.


2009 ◽  
Vol 48 (3) ◽  
pp. 1391-1399 ◽  
Author(s):  
R. Lanza ◽  
D. Dalle Nogare ◽  
P. Canu

ChemInform ◽  
2007 ◽  
Vol 38 (30) ◽  
Author(s):  
Marcos N. Eberlin ◽  
Daniella Vasconcellos Augusti ◽  
Rodinei Augusti

Author(s):  
Ahmed Al Shoaibi ◽  
Anthony M. Dean

Pyrolysis experiments of isobutane, isobutylene, and 1-butene were performed over a temperature range of 550–750°C and a pressure of ∼0.8 atm. The residence time was ∼5 s. The fuel conversion and product selectivity were analyzed at these temperatures. The pyrolysis experiments were performed to simulate the gas-phase chemistry that occurs in the anode channel of a solid-oxide fuel cell (SOFC). The experimental results confirm that molecular structure has a substantial impact on pyrolysis kinetics. The experimental data show considerable amounts of C5 and higher species (∼2.8 mole % with isobutane at 750°C, ∼7.5 mole % with isobutylene at 737.5°C, and ∼7.4 mole % with 1-butene at 700°C). The C5+ species are likely deposit precursors. The results confirm that hydrocarbon gas-phase kinetics have substantial impact on a SOFC operation.


Sign in / Sign up

Export Citation Format

Share Document