Unusual dependence of the quantum yields of photochemical rearrangement of substituted 8-phenyl-3,5,10-trioxa-9-azabicyclo[5,3,0]dec-8-enes to 2-substituted 6-phenyl-7-formyl-2,4,5,8-tetrahydro-1,3-dioxa-5-azocines on exo-endo arrangement

1986 ◽  
Vol 328 (3) ◽  
pp. 445-448 ◽  
Author(s):  
Ľ. Fišera ◽  
V. Oremus ◽  
L. Štibrányi ◽  
P. Zálupský ◽  
H.-J. Timpe ◽  
...  
2018 ◽  
Vol 42 (14) ◽  
pp. 11438-11449 ◽  
Author(s):  
Shih-Hao Su ◽  
Ming-Der Su

Our theoretical observations indicate that for [2.1.0], [3.1.0], [4.1.0], and [5.1.0] molecules, the quantum yields of the tautomeric keto forms are larger than those of the corresponding enol isomers.


1971 ◽  
Vol 49 (17) ◽  
pp. 2916-2917 ◽  
Author(s):  
M. Day ◽  
D. M. Wiles

The liquid phase photolysis of undiluted di-n-butyl terephthalate yields 1-butene and carboxylic acid end groups as a result of a Norrish Type II photochemical rearrangement reaction. Quantum yields for the production of these two products have been determined and found to be [Formula: see text] and [Formula: see text] in vacuum and [Formula: see text] and [Formula: see text] in air.


2011 ◽  
Vol 89 (3) ◽  
pp. 364-384 ◽  
Author(s):  
Richard S. Givens ◽  
Kenneth Stensrud ◽  
Peter G. Conrad ◽  
Abraham L. Yousef ◽  
Chamani Perera ◽  
...  

A broadly based investigation of the effects of a diverse array of substituents on the photochemical rearrangement of p-hydroxyphenacyl esters has demonstrated that common substituents such as F, MeO, CN, CO2R, CONH2, and CH3 have little effect on the rate and quantum efficiencies for the photo-Favorskii rearrangement and the release of the acid leaving group or on the lifetimes of the reactive triplet state. A decrease in the quantum yields across all substituents was observed for the release and rearrangement when the photolyses were carried out in buffered aqueous media at pHs that exceeded the ground-state pKa of the chromophore where the conjugate base is the predominant form. Otherwise, substituents have only a very modest effect on the photoreaction of these robust chromophores.


1990 ◽  
Vol 55 (2) ◽  
pp. 512-523 ◽  
Author(s):  
Lubor Fišera ◽  
Vladimír Ondruš ◽  
Hans-Joachim Timpe

1,3-Dipolar cycloaddition of methoxycarbonylnitrile, furannitrile and substituted benzene nitrile oxides (X = 4-CH3, 4-OCH3, 3-OCH3, 4-Cl, 3-Cl, 2,4-diCl, 4-F) to dimethyl 7-(diphenylmethylene)bicyclo[2.2.1]hept-2-ene-5,6-dicarboxylate (XII) led exclusively to exo cycloadducts IV, on irradiation with a low-pressure mercury lamp afforded the required 4-substituted derivatives of dimethyl 2,2-diphenyl-5-formyl-3-azabicyclo[4.3.0]nona-4,9-diene-7,8-dicarboxylate (XI) as sole products. Selectivity of the photorearrangement of isoxazolines IV to enaminoaldehydes XI is due to a stabilization of the biradical VII by the overlap of the radical-electron with π-electrons of the C=C double bond and by two benzene rings. Quantum yields of the photorearrangement, established from the deficit of the starting IV, were found to be greater than those for the analogous oxabicyclic derivatives XVI. The reaction mechanism is proposed and the dependence on various solvents is pointed out; this reaction sequence, viz. the 1,3-dipolar cycloaddition followed by a photochemical rearrangement provides a new method for obtaining derivatives of tetrahydro-2H-pyridine from the well available cyclopentadiene.


2020 ◽  
Author(s):  
Thomas Baumgartner ◽  
Paul Demay-Drouhard

The unexpectedly challenging synthesis of 4-pyridyl-extended dithienophospholes is reported. The optical and electrochemical properties of the phosphoryl-bridged species were studied experimentally and computationally, and their properties compared to their non-<i>P</i>-bridged congeners. The 4-pyridyl-extended dithieno-phospholes display quantitative luminescence quantum yields in solution.<br><br>


2020 ◽  
Author(s):  
Thomas Baumgartner ◽  
Paul Demay-Drouhard

The unexpectedly challenging synthesis of 4-pyridyl-extended dithienophospholes is reported. The optical and electrochemical properties of the phosphoryl-bridged species were studied experimentally and computationally, and their properties compared to their non-<i>P</i>-bridged congeners. The 4-pyridyl-extended dithieno-phospholes display quantitative luminescence quantum yields in solution.<br><br>


2019 ◽  
Author(s):  
Aurelio A. Rossinelli ◽  
Henar Rojo ◽  
Aniket S. Mule ◽  
Marianne Aellen ◽  
Ario Cocina ◽  
...  

<div>Colloidal semiconductor nanoplatelets exhibit exceptionally narrow photoluminescence spectra. This occurs because samples can be synthesized in which all nanoplatelets share the same atomic-scale thickness. As this dimension sets the emission wavelength, inhomogeneous linewidth broadening due to size variation, which is always present in samples of quasi-spherical nanocrystals (quantum dots), is essentially eliminated. Nanoplatelets thus offer improved, spectrally pure emitters for various applications. Unfortunately, due to their non-equilibrium shape, nanoplatelets also suffer from low photo-, chemical, and thermal stability, which limits their use. Moreover, their poor stability hampers the development of efficient synthesis protocols for adding high-quality protective inorganic shells, which are well known to improve the performance of quantum dots. <br></div><div>Herein, we report a general synthesis approach to highly emissive and stable core/shell nanoplatelets with various shell compositions, including CdSe/ZnS, CdSe/CdS/ZnS, CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S, and CdSe/ZnSe. Motivated by previous work on quantum dots, we find that slow, high-temperature growth of shells containing a compositional gradient reduces strain-induced crystal defects and minimizes the emission linewidth while maintaining good surface passivation and nanocrystal uniformity. Indeed, our best core/shell nanoplatelets (CdSe/Cd<sub>x</sub>Zn<sub>1–x</sub>S) show photoluminescence quantum yields of 90% with linewidths as low as 56 meV (19.5 nm at 655 nm). To confirm the high quality of our different core/shell nanoplatelets for a specific application, we demonstrate their use as gain media in low-threshold ring lasers. More generally, the ability of our synthesis protocol to engineer high-quality shells can help further improve nanoplatelets for optoelectronic devices.</div>


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>


2019 ◽  
Author(s):  
Terri Lovell ◽  
Curtis Colwell ◽  
Lev N. Zakharov ◽  
Ramesh Jasti

<p>[<i>n</i>]Cycloparaphenylenes, or “carbon nanohoops,” are unique conjugated macrocycles with radially oriented p-systems similar to those in carbon nanotubes. The centrosymmetric nature and conformational rigidity of these molecules lead to unusual size-dependent photophysical characteristics. To investigate these effects further and expand the family of possible structures, a new class of related carbon nanohoops with broken symmetry is disclosed. In these structures, referred to as <i>meta</i>[<i>n</i>]cycloparaphenylenes, a single carbon-carbon bond is shifted by one position in order to break the centrosymmetric nature of the parent [<i>n</i>]cycloparaphenylenes. Advantageously, the symmetry breaking leads to bright emission in the smaller nanohoops, which are typically non-fluorescent due to optical selection rules. Moreover, this simple structural manipulation retains one of the most unique features of the nanohoop structures-size dependent emissive properties with relatively large extinction coefficents and quantum yields. Inspired by earlier theoretical work by Tretiak and co-workers, this joint synthetic, photophysical, and theoretical study provides further design principles to manipulate the optical properties of this growing class of molecules with radially oriented p-systems.</p>


2018 ◽  
Vol 15 (2) ◽  
pp. 179-207
Author(s):  
Ashaparna Mondal ◽  
Priyankar Paira

Background: Currently ruthenium complexes are immerging as effective anticancer agents due to their less toxicity, better antiproliferative and antimetastatic activity, better stability in cellular environment and most importantly variable oxidation and co-ordination states of ruthenium allows binding this molecule with a variety of ligands. So in past few years researchers have shifted their interest towards organoruthenium complexes having good fluorescent profile that may be applicable for cancer theranostics. Nowadays, photodynamic therapy has become more acceptable because of its easy and effective approach towards killing cancer cells. Objective: Objective of this review article is to shed light on synthesis, characterization, stability and fluorescence studies of various ruthenium [Ru(II) and Ru(III)] complexes and different bioactivity studies conducted with the synthesized compounds to test their candidacy as potent chemotherapeutic agents. Methods: Various heterocyclic ligands containing N,O and S as heteroatom mainly were prepared and subjected to complexation with ruthenium-p-cymene moiety. In most cases [Ru(η6-p-cymene)(µ-Cl)Cl]2 was used as ruthenium precursor and the reactions were conducted in various alcohol medium such as methanol, ethanol or propanol. The synthesized complexes were characterized by 1H NMR and 13C NMR spectroscopy, GC-MS, ESI-MS, elemental analysis and single crystal X-ray crystallography methods. Fluorescence study and stability study were conducted accordingly using water, PBS buffer or DMSO. Stable compounds were considered for cell viability studies. To study the efficacy of the compounds in ROS generation as photosensitizers, in few cases, singlet oxygen quantum yields in presence of light were calculated. Suitable compounds were selected for in vitro & in vivo antiproliferative, anti-invasive activity studies. Result: Many newly synthesized compounds were found to have less IC50 compared to a standard drug cysplatin. Those compounds were also stable preferably in physiological conditions. Good fluorescence profile and ROS generation ability were observed for few compounds. Conclusion: Numerous ruthenium complexes were developed which can be used as cancer theranostic agents. Few molecules were synthesized as photosensitizers which were supposed to generate reactive singlet oxygen species in targeted cellular environment in presence of a particular type of light and thereby ceasing cancer cell growth.


Sign in / Sign up

Export Citation Format

Share Document