scholarly journals How Zwicky already ruled out modified gravity theories without dark matter

2017 ◽  
Vol 65 (6-8) ◽  
pp. 1600050 ◽  
Author(s):  
Theodorus Maria Nieuwenhuizen
2019 ◽  
Vol 15 (S359) ◽  
pp. 457-459
Author(s):  
Davi C. Rodrigues ◽  
Valerio Marra

AbstractWe review some of our recent results about the Radial Acceleration Relation (RAR) and its interpretation as either a fundamental or an emergent law. The former interpretation is in agreement with a class of modified gravity theories that dismiss the need for dark matter in galaxies (MOND in particular). Our most recent analysis, which includes refinements on the priors and the Bayesian test for compatibility between the posteriors, confirms that the hypothesis of a fundamental RAR is rejected at more than 5σ from the very same data that was used to infer the RAR.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1417
Author(s):  
Marcelo Schiffer

It is a well-known fact that the Newtonian description of dynamics within Galaxies for its known matter content is in disagreement with the observations as the acceleration approaches a0≈1.2×10−10 m/s2 (slighter larger for clusters). Both the Dark Matter scenario and Modified Gravity Theories (MGT) fail to explain the existence of such an acceleration scale. Motivated by the closeness of the acceleration scale and the Hubble constant cH0≈10−9 h m/s2, we are led to analyze whether this coincidence might have a Cosmological origin for scalar-tensor and spinor-tensor theories by performing detailed calculations for perturbations that represent the local matter distribution on the top of the cosmological background. Then, we solve the field equations for these perturbations in a power series in the present value of the Hubble constant. As we shall see, for both theories, the power expansion contains only even powers in the Hubble constant, a fact that renders the cosmological expansion irrelevant for the local dynamics.


2019 ◽  
Vol 28 (12) ◽  
pp. 1950157 ◽  
Author(s):  
Tomohiro Inagaki ◽  
Yamato Matsuo ◽  
Hiroki Sakamoto

The logarithmic [Formula: see text]-corrected [Formula: see text] gravity is investigated as a prototype model of modified gravity theories with quantum corrections. By using the auxiliary field method, the model is described by the general relativity with a scalaron field. The scalaron field can be identified as an inflaton at the primordial inflation era. It is also one of the dark matter candidates in the dark energy (DE) era. It is found that a wide range of the parameters is consistent with the current observations of CMB fluctuations, DE and dark matter.


Sign in / Sign up

Export Citation Format

Share Document