scholarly journals Dark matter in logarithmic F(R) gravity

2019 ◽  
Vol 28 (12) ◽  
pp. 1950157 ◽  
Author(s):  
Tomohiro Inagaki ◽  
Yamato Matsuo ◽  
Hiroki Sakamoto

The logarithmic [Formula: see text]-corrected [Formula: see text] gravity is investigated as a prototype model of modified gravity theories with quantum corrections. By using the auxiliary field method, the model is described by the general relativity with a scalaron field. The scalaron field can be identified as an inflaton at the primordial inflation era. It is also one of the dark matter candidates in the dark energy (DE) era. It is found that a wide range of the parameters is consistent with the current observations of CMB fluctuations, DE and dark matter.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1417
Author(s):  
Marcelo Schiffer

It is a well-known fact that the Newtonian description of dynamics within Galaxies for its known matter content is in disagreement with the observations as the acceleration approaches a0≈1.2×10−10 m/s2 (slighter larger for clusters). Both the Dark Matter scenario and Modified Gravity Theories (MGT) fail to explain the existence of such an acceleration scale. Motivated by the closeness of the acceleration scale and the Hubble constant cH0≈10−9 h m/s2, we are led to analyze whether this coincidence might have a Cosmological origin for scalar-tensor and spinor-tensor theories by performing detailed calculations for perturbations that represent the local matter distribution on the top of the cosmological background. Then, we solve the field equations for these perturbations in a power series in the present value of the Hubble constant. As we shall see, for both theories, the power expansion contains only even powers in the Hubble constant, a fact that renders the cosmological expansion irrelevant for the local dynamics.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


Author(s):  
Edmund Bertschinger

The metric of a perturbed Robertson–Walker space–time is characterized by three functions: a scale-factor giving the expansion history and two potentials that generalize the single potential of Newtonian gravity. The Newtonian potential induces peculiar velocities and, from these, the growth of matter fluctuations. Massless particles respond equally to the Newtonian potential and to a curvature potential. The difference of the two potentials, called the gravitational slip, is predicted to be very small in general relativity, but can be substantial in modified gravity theories. The two potentials can be measured, and gravity tested on cosmological scales, by combining weak gravitational lensing or the integrated Sachs–Wolfe effect with galaxy peculiar velocities or clustering.


2019 ◽  
Vol 488 (4) ◽  
pp. 4740-4752 ◽  
Author(s):  
Charalambos Pittordis ◽  
Will Sutherland

ABSTRACT Several recent studies have shown that very wide binary stars can potentially provide an interesting test for modified-gravity theories which attempt to emulate dark matter; these systems should be almost Newtonian according to standard dark-matter theories, while the predictions for MOND-like theories are distinctly different, if the various observational issues can be overcome. Here we explore an observational application of the test from the recent Gaia DR2 data release: we select a large sample of ∼24 000 candidate wide binary stars with distance $\lt 200 \, {\rm pc}$ and magnitudes G < 16 from Gaia DR2, and estimated component masses using a main-sequence mass–luminosity relation. We then compare the frequency distribution of pairwise relative projected velocity (relative to circular-orbit value) as a function of projected separation; these distributions show a clear peak at a value close to Newtonian expectations, along with a long ‘tail’ which extends to much larger velocity ratios; the ‘tail’ is considerably more numerous than in control samples constructed from DR2 with randomized positions, so its origin is unclear. Comparing the velocity histograms with simulated data, we conclude that MOND-like theories without an external field effect (ExFE) are strongly inconsistent with the observed data since they predict a peak-shift in clear disagreement with the data; testing MOND-like theories with an ExFE is not decisive at present, but has good prospects to become decisive in future with improved modelling or understanding of the high-velocity tail, and additional spectroscopic data.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2555-2562 ◽  
Author(s):  
KIRILL KRASNOV ◽  
YURI SHTANOV

We describe how a certain simple modification of general relativity, in which the local cosmological constant is allowed to depend on the space–time curvature, predicts the existence of halos of modified gravity surrounding spherically symmetric objects. We show that the gravitational mass of an object weighed together with its halo can be much larger than its gravitational mass as seen from inside the halo. This effect could provide an alternative explanation of the dark-matter phenomenon in galaxies. In this case, the local cosmological constant in the solar system must be some six orders of magnitude larger than its cosmic value obtained in the supernova type Ia experiments. This is well within the current experimental bounds, but may be directly observable in future high-precision experiments.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Utkarsh Kumar ◽  
Sukanta Panda ◽  
Avani Patel

Abstract The strong gravitational field near massive blackhole is an interesting regime to test General Relativity (GR) and modified gravity theories. The knowledge of spacetime metric around a blackhole is a primary step for such tests. Solving field equations for rotating blackhole is extremely challenging task for the most modified gravity theories. Though the derivation of Kerr metric of GR is also demanding job, the magical Newmann–Janis algorithm does it without actually solving Einstein equation for rotating blackhole. Due to this notable success of Newmann–Janis algorithm in the case of Kerr metric, it has been being used to obtain rotating blackhole solution in modified gravity theories. In this work, we derive the spacetime metric for the external region of a rotating blackhole in a nonlocal gravity theory using Newmann–Janis algorithm. We also derive metric for a slowly rotating blackhole by perturbatively solving field equations of the theory. We discuss the applicability of Newmann–Janis algorithm to nonlocal gravity by comparing slow rotation limit of the metric obtained through Newmann–Janis algorithm with slowly rotating solution of the field equation.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743010 ◽  
Author(s):  
C. Sivaram

For Newtonian dynamics to hold over galactic scales, large amounts of dark matter (DM) are required which would dominate cosmic structures. Accounting for the strong observational evidence that the universe is accelerating requires the presence of an unknown dark energy (DE) component constituting about 70% of the matter. Several ingenious ongoing experiments to detect the DM particles have so far led to negative results. Moreover, the comparable proportions of the DM and DE at the present epoch appear unnatural and not predicted by any theory. For these reasons, alternative ideas like MOND and modification of gravity or general relativity over cosmic scales have been proposed. It is shown in this paper that these alternate ideas may not be easily distinguishable from the usual DM or DE hypotheses. Specific examples are given to illustrate this point that the modified theories are special cases of a generalized DM paradigm.


Galaxies ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 41 ◽  
Author(s):  
Norman Israel ◽  
John Moffat

A major hurdle for modified gravity theories is to explain the dynamics of galaxy clusters. A case is made for a generalized gravitational theory called Scalar-Tensor-Vector-Gravity (STVG) or MOG (Modified Gravity) to explain merging cluster dynamics. The paper presents the results of a re-analysis of the Bullet Cluster, as well as an analysis of the Train Wreck Cluster in the weak gravitational field limit without dark matter. The King- β model is used to fit the X-ray data of both clusters, and the κ -maps are computed using the parameters of this fit. The amount of galaxies in the clusters is estimated by subtracting the predicted κ -map from the κ -map data. The estimate for the Bullet Cluster is that 14.1 % of the cluster is composed of galaxies. For the Train Wreck Cluster, if the Jee et al. data are used, 25.7 % of the cluster is composed of galaxies. The baryon matter in the galaxies and the enhanced strength of gravitation in MOG shift the lensing peaks, making them offset from the gas. The work demonstrates that this generalized gravitational theory can explain merging cluster dynamics without dark matter.


2019 ◽  
Vol 15 (S359) ◽  
pp. 457-459
Author(s):  
Davi C. Rodrigues ◽  
Valerio Marra

AbstractWe review some of our recent results about the Radial Acceleration Relation (RAR) and its interpretation as either a fundamental or an emergent law. The former interpretation is in agreement with a class of modified gravity theories that dismiss the need for dark matter in galaxies (MOND in particular). Our most recent analysis, which includes refinements on the priors and the Bayesian test for compatibility between the posteriors, confirms that the hypothesis of a fundamental RAR is rejected at more than 5σ from the very same data that was used to infer the RAR.


2019 ◽  
Vol 632 ◽  
pp. A52 ◽  
Author(s):  
Eder L. D. Perico ◽  
Rodrigo Voivodic ◽  
Marcos Lima ◽  
David F. Mota

Modified gravity (MG) theories aim to reproduce the observed acceleration of the Universe by reducing the dark sector while simultaneously recovering General Relativity (GR) within dense environments. Void studies appear to be a suitable scenario to search for imprints of alternative gravity models on cosmological scales. Voids cover an interesting range of density scales where screening mechanisms fade out, which reaches from a density contrast δ ≈ −1 close to their centers to δ ≈ 0 close to their boundaries. We present an analysis of the level of distinction between GR and two modified gravity theories, the Hu–Sawicki f(R) and the symmetron theory. This study relies on the abundance, linear bias, and density profile of voids detected in N-body cosmological simulations. We define voids as connected regions made up of the union of spheres with a mean density given by ρ̅v = 0.2 ρ̅m, but disconnected from any other voids. We find that the height of void walls is considerably affected by the gravitational theory, such that it increases for stronger gravity modifications. Finally, we show that at the level of dark matter N-body simulations, our constraints allow us to distinguish between GR and MG models with |fR0| > 10−6 and zSSB >  1. Differences of best-fit values for MG parameters that are derived independently from multiple void probes may indicate an incorrect MG model. This serves as an important consistency check.


Sign in / Sign up

Export Citation Format

Share Document