Fipronil resistance in the whitebacked planthopper (Sogatella furcifera): possible resistance mechanisms and cross-resistance

2009 ◽  
Vol 66 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Jian Tang ◽  
Jian Li ◽  
Ying Shao ◽  
Baojun Yang ◽  
Zewen Liu
2010 ◽  
Vol 77 (3) ◽  
pp. 786-793 ◽  
Author(s):  
Jitender Mehla ◽  
S. K. Sood

ABSTRACTA better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and forin vitroassessment, variants ofEnterococcus faecalisthat are resistant to different doses of the fungal AMP alamethicin (Almr) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Almrvariants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Almrvariants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Almrvariants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using anin vitrocolorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.


2022 ◽  
Author(s):  
Magellan Tchouakui ◽  
Tatiane Assatse ◽  
Leon M. J. Mugenzi ◽  
Benjamin D. Menze ◽  
Daniel Nguiffo-Nguete ◽  
...  

Abstract Background New insecticides with a novel mode of action such as neonicotinoids have recently been recommended for public health by WHO. Resistance monitoring of such novel insecticides requires a robust protocol to monitor the development of resistance in natural populations. In this study, we comparatively used three different solvents to assess the susceptibility of malaria vectors to neonicotinoids across Africa.MethodsMosquitoes were collected from May to July 2021 from three agricultural settings in Cameroon (Njombe-Penja, Nkolondom, and Mangoum), the Democratic Republic of Congo (Ndjili-Brasserie), Ghana (Obuasi), and Uganda (Mayuge). Using the CDC bottle test, we compared the effect of three different solvents (ethanol, acetone, MERO) on the efficacy of neonicotinoids against Anopheles gambiae s.l. In addition, TaqMan assays were used to genotype key pyrethroid-resistant markers in An. gambiae and to evaluate potential cross-resistance between pyrethroids and clothianidin.ResultsLower mortality were observed when using absolute ethanol or acetone alone as solvent (11.4- 51.9% mortality in Nkolondom, 31.7- 48.2% in Mangoum, 34.6- 56.1% in Mayµge, 39.4- 45.6% in Obuasi, 83.7- 89.3% in Congo and 71.05- 95.9% in Njombe pendja) compared to acetone + MERO for which 100% mortality were observed for all the populations. Synergist assays (PBO, DEM and DEF) revealed a significant increase of mortality suggesting that metabolic resistance mechanisms are contributing to the reduced susceptibility. A negative association was observed between the L1014F-kdr mutation and clothianidin resistance with a greater frequency of homozygote resistant mosquitoes among the dead than among survivors (OR=0.5; P=0.02). However, the I114T-GSTe2 was in contrast significantly associated with a greater ability to survive clothianidin with a higher frequency of homozygote resistant among survivors than other genotypes (OR=2.10; P=0.013). ConclusionsThis study revealed a contrasted susceptibility pattern depending on the solvents with ethanol/acetone resulting to lower mortality, thus possibly overestimating resistance, whereas the MERO consistently showed a greater efficacy of neonicotinoids but it could prevent to detect early resistance development. Therefore, we recommend monitoring the susceptibility using both acetone alone and acetone+MERO (8-10µg/ml for clothianidin) to capture the accurate resistance profile of the mosquito populations.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 424-432 ◽  
Author(s):  
Javid Gherekhloo ◽  
Zahra M. Hatami ◽  
Ricardo Alcántara-de la Cruz ◽  
Hamid R. Sadeghipour ◽  
Rafael De Prado

AbstractWild mustard (Sinapis arvensis L.) is a weed that frequently infests winter wheat (Triticum aestivum L.) fields in Golestan province, Iran. Tribenuron-methyl (TM) has been used recurrently to control this species, thus selecting for resistant S. arvensis populations. The objectives were: (1) to determine the resistance level to TM of 14 putatively resistant (PR) S. arvensis populations, collected from winter wheat fields in Golestan province, Iran, in comparison to one susceptible (S) population; and (2) to characterize the resistance mechanisms and the potential evolution of cross-resistance to other classes of acetolactate synthase (ALS)-inhibiting herbicides in three populations (AL-3, G-5, and Ag-Sr) confirmed as being resistant (R) to TM. The TM doses required to reduce the dry weight of the PR populations by 50% were between 2.2 and 16.8 times higher than those needed for S plants. The ALS enzyme activity assays revealed that the AL-3, G-5, and Ag-Sr populations evolved cross-resistance to the candidate ALS-inhibiting herbicides from the sulfonylureas (SU), triazolopyrimidines (TP), pyrimidinyl-thiobenzoates (PTB), sulfonyl-aminocarbonyl-triazolinone (SCT), and imidazolinones (IMI) classes. No differences in absorption, translocation, or metabolism of [14C]TM between R and S plants were observed, suggesting that these non-target mechanisms were not responsible for the resistance. The ALS gene of the R populations contained the Trp-574-Leu mutation, conferring cross-resistance to the SU, SCT, PTB, TP, and IMI classes. The Trp-574-Leu mutation in the ALS gene conferred cross-resistance to ALS-inhibiting herbicides in S. arvensis from winter wheat fields in Golestan province. This is the first TM resistance case confirmed in this species in Iran.


1985 ◽  
Vol 6 (2) ◽  
pp. 115-134 ◽  
Author(s):  
Z. R. Khan ◽  
R. C. Saxena

AbstractThis selected bibliography on the whitebacked planthopper, Sogatella furcifera (Horváth), contains 506 published and unpublished references for the period 1899 to February 1984. References are arranged alphabetically by the name of the author and also classified by subjects. A distribution map, two tables of the varietal resistance to the pest and its natural enemies, and a brief description of the current status of the pest are also provided.


2020 ◽  
Vol 65 (1) ◽  
pp. e01914-20
Author(s):  
Anna E. Grzegorzewicz ◽  
Joël Lelièvre ◽  
Jorge Esquivias ◽  
Bhanupriya Angala ◽  
Jiuyu Liu ◽  
...  

ABSTRACTPhenotypic screening of inhibitors of the essential Mycobacterium tuberculosis FAS-II dehydratase HadAB led to the identification of GSK3011724A, a compound previously reported to inhibit the condensation step of FAS-II. Whole-cell-based and cell-free assays confirmed the lack of activity of GSK3011724A against the dehydratase despite evidence of cross-resistance between GSK3011724A and HadAB inhibitors. The nature of the resistance mechanisms is suggestive of alterations in the FAS-II interactome reducing access of GSK3011724A to KasA.


2016 ◽  
Vol 60 (4) ◽  
pp. 2043-2051 ◽  
Author(s):  
Zijian Gong ◽  
Wei Lai ◽  
Min Liu ◽  
Zhengshuang Hua ◽  
Yayin Sun ◽  
...  

ABSTRACTThe emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry.


Sign in / Sign up

Export Citation Format

Share Document