Continuous Use of Tribenuron-Methyl Selected for Cross-Resistance to Acetolactate Synthase–inhibiting Herbicides in Wild Mustard (Sinapis arvensis)

Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 424-432 ◽  
Author(s):  
Javid Gherekhloo ◽  
Zahra M. Hatami ◽  
Ricardo Alcántara-de la Cruz ◽  
Hamid R. Sadeghipour ◽  
Rafael De Prado

AbstractWild mustard (Sinapis arvensis L.) is a weed that frequently infests winter wheat (Triticum aestivum L.) fields in Golestan province, Iran. Tribenuron-methyl (TM) has been used recurrently to control this species, thus selecting for resistant S. arvensis populations. The objectives were: (1) to determine the resistance level to TM of 14 putatively resistant (PR) S. arvensis populations, collected from winter wheat fields in Golestan province, Iran, in comparison to one susceptible (S) population; and (2) to characterize the resistance mechanisms and the potential evolution of cross-resistance to other classes of acetolactate synthase (ALS)-inhibiting herbicides in three populations (AL-3, G-5, and Ag-Sr) confirmed as being resistant (R) to TM. The TM doses required to reduce the dry weight of the PR populations by 50% were between 2.2 and 16.8 times higher than those needed for S plants. The ALS enzyme activity assays revealed that the AL-3, G-5, and Ag-Sr populations evolved cross-resistance to the candidate ALS-inhibiting herbicides from the sulfonylureas (SU), triazolopyrimidines (TP), pyrimidinyl-thiobenzoates (PTB), sulfonyl-aminocarbonyl-triazolinone (SCT), and imidazolinones (IMI) classes. No differences in absorption, translocation, or metabolism of [14C]TM between R and S plants were observed, suggesting that these non-target mechanisms were not responsible for the resistance. The ALS gene of the R populations contained the Trp-574-Leu mutation, conferring cross-resistance to the SU, SCT, PTB, TP, and IMI classes. The Trp-574-Leu mutation in the ALS gene conferred cross-resistance to ALS-inhibiting herbicides in S. arvensis from winter wheat fields in Golestan province. This is the first TM resistance case confirmed in this species in Iran.

Weed Science ◽  
2018 ◽  
Vol 67 (2) ◽  
pp. 183-188 ◽  
Author(s):  
Wei Deng ◽  
Yingjie Di ◽  
Jingxuan Cai ◽  
Yueyang Chen ◽  
Shuzhong Yuan

AbstractCatchweed bedstraw (Galium aparine L.) is a problematic dicot weed that occurs in major winter wheat (Triticum aestivum L.) fields in China. Tribenuron-methyl has been widely used to control broadleaf weeds since 1988 in China. However, overuse has led to the resistance evolution of G. aparine to tribenuron-methyl. In this study, 20 G. aparine populations collected from Shandong and Henan provinces were used to determine tribenuron-methyl resistance and target-site resistance mechanisms. In dose–response experiments, 12 G. aparine populations showed different resistance levels (2.92 to 842.41-fold) to tribenuron-methyl compared with the susceptible population. Five different acetolactate synthase (ALS) mutations (Pro-197-Leu, Pro-197-Ser, Pro-197-His, Asp-376-Glu, and Trp-574-Leu) were detected in different resistant populations. Individuals heterozygous for Pro-197-Ser and Trp-574-Leu mutations were also observed in a resistant population (HN6). In addition, pHB4 (Pro-197-Ser), pHB7 (Pro-197-His), pHB8 (Pro-197-Leu), pHB5 (Asp-376-Glu), and pHB3 (Trp-574-Leu) subpopulations individually homozygous for specific ALS mutations were generated to evaluate the cross-resistance to ALS-inhibiting herbicides. The pHB4, pHB7, pHB8, pHB5, and pHB3 subpopulations all were resistant to sulfonylurea, pyrazosulfuron-ethyl, triazolopyrimidine, flumetsulam, sulfonylamino-carbonyl-triazolinone, flucarbazone-sodium, pyrimidinyl thiobenzoate, pyribenzoxim, and the imidazolinone imazethapyr. These results indicated the diversity of the resistance-conferring ALS mutations in G. aparine, and all these mutations resulted in broad cross-resistance to five kinds of ALS-inhibiting herbicides.


Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 389-398
Author(s):  
Parsa Tehranchian ◽  
Jason K. Norsworthy ◽  
Matheus Palhano ◽  
Nicholas E. Korres ◽  
Scott McElroy ◽  
...  

A yellow nutsedge biotype (Res) from an Arkansas rice field has evolved resistance to acetolactate synthase (ALS)-inhibiting herbicides. TheResbiotype previously exhibited cross-resistance to ALS inhibitors from four chemical families (imidazolinone, pyrimidinyl benzoate, sulfonylurea, and triazolopyrimidine). Experiments were conducted to evaluate alternative herbicides (i.e., glyphosate, bentazon, propanil, quinclorac, and 2,4-D) currently labeled in Arkansas rice–soybean production systems. Based on the percentage of aboveground dry weight reduction, control of the yellow nutsedge biotypes with the labeled rate of bentazon, propanil, quinclorac, and 2,4-D was < 44%. Glyphosate (867 g ae ha−1) resulted in 68 and > 94% control of theResand susceptible yellow nutsedge biotypes, respectively, at 28 d after treatment. Dose-response studies were conducted to estimate the efficacy of glyphosate on theResbiotype, three susceptible yellow nutsedge biotypes, and purple nutsedge. Based on the dry weights, theResbiotype was ≥ 5- and ≥ 1.3-fold less responsive to glyphosate compared to the susceptible biotypes and purple nutsedge, respectively. Differences in absorption and translocation of radiolabeled glyphosate were observed among the yellow nutsedge biotypes and purple nutsedge. The susceptible biotype had less14C-glyphosate radioactivity in the tissues above the treated leaf and greater radioactivity in tissues below the treated leaf compared to theResbiotype and purple nutsedge. Reduced translocation of glyphosate in tissues below the treated leaf of theResbiotype could be a reason for the lower glyphosate efficacy in theResbiotype. No amino acid substitution that would correspond to glyphosate resistance was found in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene of theResbiotype. However, an amino acid (serine) addition was detected in the EPSPS gene of theResbiotype; albeit, it is not believed that this addition contributes to lower efficacy of glyphosate in this biotype.


2012 ◽  
Vol 52 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Ilias Travlos

Evaluation of Herbicide-Resistance Status on Populations of Littleseed Canarygrass (Phalaris MinorRetz.) from Southern Greece and Suggestions for their Effective ControlIn 2010, a survey was conducted in the wheat fields of a typical cereal-producing region of Greece to establish the frequency and distribution of herbicide-resistant littleseed canarygrass (Phalaris minorRetz.). In total, 73 canarygrass accessions were collected and screened in a field experiment with several herbicides commonly used to control this weed. Most of the weed populations were classed as resistant (or developing resistance) to the acetyl-CoA varboxylase (ACCase)-inhibiting herbicide diclofop, while resistance to clodinafop was markedly lower. The results of the pot experiments showed that some of the canary populations were found to have a very high level of diclofop resistance (resistance index up to 12.4), while cross resistance with other herbicides was also common. The levels of resistance and cross resistance patterns among populations varied along with the different amounts and times of selection pressure. Such variation indicated either more than one mechanism of resistance or different resistance mutations in these weed populations. The population which had the highest diclofop resistance level, showed resistance to all aryloxyphenoxypropinate (APP) herbicides applied and non-ACCase inhibitors. Alternative ACCase-inhibiting herbicides, such as pinoxaden remain effective on the majority of the tested canarygrass populations, while the acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron + iodosulfuron could also provide some solutions. Consequently, there is an opportunity to effectively control canarygrass by selecting from a wide range of herbicides. It is the integration of agronomic practices with herbicide application, which helps in effective management ofP. minorand particularly its resistant populations.


2015 ◽  
Vol 29 (3) ◽  
pp. 509-518 ◽  
Author(s):  
William S. Curran ◽  
John M. Wallace ◽  
Steven Mirsky ◽  
Benjamin Crockett

A field experiment was conducted in 2009–2010 at Pennsylvania and Maryland locations, and repeated it in 2010–2011 to test the effectiveness of POST-applied herbicides at fall and spring timings on seeded hairy vetch in winter wheat. A total of 16 herbicide treatment combinations was tested that included synthetic auxins, acetolactate synthase (ALS) inhibitors, and a protoporphyrinogen oxidase inhibitor. Spring applications tended to be more effective than fall applications. Among synthetic auxins, clopyralid (105 g ae ha−1) and treatments containing dicamba (140 g ae ha−1) were effective at both timings, resulting in greater than 90% hairy vetch control at wheat harvest. Pyroxsulam and prosulfuron applied at 18 g ai ha−1 provided the most effective hairy vetch control (> 90%) at both application timings among ALS inhibitors. Spring applications of several herbicides provided moderate (> 80%) to high (> 90%) levels of hairy vetch control, including: 2,4-D amine (140 g ae ha−1), mesosulfuron-methyl (15 g ai ha−1), tribenuron-methyl (13 g ai ha−1), and thifensulfuron/tribenuron-methyl treatments (16 and 32 g ai ha−1). Winter wheat injury was evaluated, but symptoms were negligible for most treatments. Winter wheat yields declined with increasing hairy vetch biomass. Fall herbicides may be prioritized to reduce hairy vetch competition during the fall and early spring growing season. Our research has established that several synthetic auxin and ALS-inhibiting herbicides, applied POST in fall or spring, can be safely used in winter wheat to control hairy vetch in an integrated weed management program.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 376-379 ◽  
Author(s):  
Hai Lan Cui ◽  
Chao Xian Zhang ◽  
Shou Hui Wei ◽  
Hong Jun Zhang ◽  
Xiang Ju Li ◽  
...  

The molecular basis of resistance to tribenuron-methyl, an acetolactate synthase (ALS)–inhibiting herbicide was investigated in four resistant (R) and three susceptible (S) flixweed populations. The resistance level in the R populations was assessed in whole-plant pot experiments in a greenhouse, and resistance indices ranged from 723 to 1422. The ALS genes of the three S populations and four R populations were cloned and sequenced, and the full coding sequence of the ALS gene of flixweed was 2,004 bp. The sequences of the ALS genes of the three S populations collected from Shaanxi, Gansu, and Tianjin were identical. Comparison of the ALS gene sequences of the S and R populations withArabidopsisrevealed that proline at position 197 of the ALS gene was substituted by leucine in R population SSX-2, by alanine in R population SSX-3, and by serine in R populations TJ-2 and GS-2. In another study of two R flixweed populations from Hebei and Shaanxi, resistance was also related to mutation at position 197 of the ALS gene. Both studies confirmed tribenuron-methyl resistance in flixweed in China, with the resistance mechanism being conferred by specific ALS point mutations at amino acid position 197.


1996 ◽  
Vol 76 (3) ◽  
pp. 531-535 ◽  
Author(s):  
D. A. Wall

Field studies were conducted at Morden, Manitoba from 1993 to 1995 to investigate the effect of cultivar selection on the effectiveness of metribuzin {4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one} for wild mustard control in field pea. In check plots, Titan, a cultivar with long vines, suppressed wild mustard growth more than Trump, a cultivar with short vines Wild mustard control with metribuzin was more consistent in Titan than in Trump. Metribuzin at 140 g ha−1 (half the full label rate) reduced wild mustard dry weight by 75 to 99% in plots seeded to Titan and by 38 to 88% in plots seeded to Trump. Results suggest that less herbicide is required for weed management in more competitive field pea cultivars. Key words: Cultivars, competitiveness, metribuzin, wild mustard, Sinapis arvensis, yield


Sign in / Sign up

Export Citation Format

Share Document