Effects of pymetrozine, an antifeedant of Hemiptera, on Asian citrus psyllid, Diaphorina citri, feeding behavior, survival and transmission of Candidatus Liberibacter asiaticus

2010 ◽  
Vol 67 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Dhana Raj Boina ◽  
Youngnam Youn ◽  
Svetlana Folimonova ◽  
Lukasz L Stelinski
2011 ◽  
Vol 12 (1) ◽  
pp. 24 ◽  
Author(s):  
Yulu Xia ◽  
Gecheng Ouyang ◽  
Ronald A. Sequeira ◽  
Yu Takeuchi ◽  
Ignacio Baez ◽  
...  

The Asian form of huanglongbing (HLB) is caused by ‘Candidatus Liberibacter asiaticus (Las),’ a phloem-limited bacterium transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama. Nutrient management, together with other cultural practices such as pruning and irrigation, for mitigation of the disease has been practiced in China for many years. Our literature review, field survey, and interviews with Chinese scientists and growers indicate that these cultural practices were generally ineffective for the disease management. However, a nutritional approach in conjunction with other cultural practices such as irrigation can maintain grove productivity for a certain time depending on the type of citrus species/cultivars, the age of the trees, the propagation method of the plants, the Asian citrus psyllid (ACP) (Diaphorina citri Kuwayama) population, and other factors. Symptomatic mature pommelo (Citrus maxima Merr) and sweet orange (C. sinensis L. Osbeck) plants can commonly survive and maintain a certain level of productivity for an additional 4 to 5 years, even longer assuming vigorous ACP control. Accepted for publication 27 June 2011. Published 3 October 2011.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 262
Author(s):  
Nabil Killiny ◽  
Pedro Gonzalez-Blanco ◽  
Yulica Santos-Ortega ◽  
Fuad Al-Rimawi ◽  
Amit Levy ◽  
...  

Huánglóngbìng (HLB), citrus greening, is one of the most destructive diseases of citrus plants worldwide. In North America, HLB is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus and is transmitted by the Asian citrus psyllid, Diaphorina citri. No cure exists at present, and the use of antibiotics for the control of HLB has gained interest due to the significant losses to the citrus industry. Because of unsatisfactory results when using foliar applications of antibiotics, concerns were raised regarding the uptake and translocation of these materials within trees. We, therefore, investigated a method that allows us to study the movement of antibiotic materials in citrus plants. Herein, we utilized a fluorescence-labeled penicillin, BOCILLIN™ FL-Penicillin (FL-penicillin), to study the uptake and translocation of penicillin in citrus plants. FL-penicillin was applied by puncture to the stem of young citrus seedlings and was traced by using fluorescence microscopy. After application, we detected FL-penicillin in the leaves and in the stem xylem and phloem tissues above and below the application site in both intact and partially bark-girdled citrus seedlings, indicating that it is easily taken up and transported through the plant vascular system. In addition, we detected FL-penicillin in the gut of D. citri, which were allowed to feed on the treated plants, suggesting translocation of this molecule into the vascular tissue. We propose that the use of fluorescent-labeled molecules could be an effective tool for understanding the uptake and translocation of antibiotics and other macromolecules in plants and insects.


2020 ◽  
Vol 113 (4) ◽  
pp. 1640-1647 ◽  
Author(s):  
Inusa J Ajene ◽  
Fathiya Khamis ◽  
Shifa Ballo ◽  
Gerhard Pietersen ◽  
Barbara van Asch ◽  
...  

Abstract Diaphorina citri Kuwayama, also known as the Asian citrus psyllid, is a pest of citrus known for its transmission of Candidatus Liberibacter asiaticus (Ca. L. asiaticus), the causal bacterium of Huanglongbing. The African citrus triozid Trioza erytreae (Del Guercio) (Hemiptera: Triozidae) has been the putative vector of Candidatus Liberibacter africanus (Ca. L. africanus) which causes the African citrus greening disease, until the recent detection of D. citri on the continent. Following reports of D. citri in Kenya and Tanzania, we surveyed citrus plants to establish the presence/absence of D. citri in Ethiopia in citrus-growing regions ranging from 900 to 2,460 m above sea level (masl). Diaphorina citri adults were detected in five of the surveyed sites in Ethiopia. Adult insects encountered were collected using an aspirator and stored in 97% ethanol. The mitochondrial cytochrome oxidase 1 (mt COI) gene of the collected insects was amplified using LepF1/LepR1 primers, and sequences obtained showed low variation, which fell within the acceptable range of species. BLAST was used to query the sequences obtained, and all the sequences linked to D. citri accessions that are available in GenBank. The analysis of the sequences revealed a new haplotype of the species that differs from haplotypes previously reported. Phylogenetic relationships of our samples and other D. citri reference sequences was inferred using the Maximum-likelihood method. Monophyly was observed between the samples and the publicly available sequences from global accessions. This is the first report of the presence of D. citri in Ethiopia.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 196 ◽  
Author(s):  
Fuad Al-Rimawi ◽  
Faraj Hijaz ◽  
Yasser Nehela ◽  
Ozgur Batuman ◽  
Nabil Killiny

Huanglongbing (HLB), or citrus greening, is the most destructive disease to the citrus industry. In Florida, it is caused by the bacterium, Candidatus Liberibacter asiaticus (CLas) and is transmitted by the Asian citrus psyllid, Diaphorina citri. Recent studies suggested that antibiotics could inhibit the growth of the CLas pathogen in planta. In the current study, we investigated the uptake and translocation of oxytetracycline and streptomycin in citrus seedlings. Oxytetracycline and streptomycin were delivered via root and stem and their level in various tissues was monitored using enzyme-linked immunosorbent assay (ELISA). Oxytetracycline and streptomycin were detected in the leaves, xylem, phloem, and root after root drench and stem delivery. High levels of antibiotics were detected in the roots after root drench, whereas high levels of antibiotics were detected in the canopy after stem delivery. The level of oxytetracycline detected in the phloem, xylem, and leaves after root drench was higher than that of streptomycin. Whereas the level of streptomycin in root was higher than that of oxytetracycline, indicating that streptomycin was bound to the xylem tissues. Oxytetracycline and streptomycin were detected in the phloem, xylem, leaves, and root tissues thirty-five days after the root incubation in 200 µg·mL−1 solution. These results demonstrated that oxytetracycline and streptomycin were relatively stable and could inhibit CLas growth for a couple of months in citrus trees. Observations reported in this study regarding the distribution and stability of oxytetracycline and streptomycin in citrus plants could be useful for designing an effective program for the control of HLB disease using antibiotics.


2016 ◽  
Vol 161 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Tianyu Wu ◽  
Xiaozhu Luo ◽  
Changbao Xu ◽  
Fengnian Wu ◽  
Jawwad A. Qureshi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Kai Liu ◽  
Jiawei He ◽  
Ziying Guan ◽  
Mingzhao Zhong ◽  
Rui Pang ◽  
...  

The Asian citrus psyllid Diaphorina citri is the transmission vector of Huanglongbing (HLB), a devastating disease of citrus plants. The bacterium “Candidatus Liberibacter asiaticus” (CLas) associated with HLB is transmitted between host plants by D. citri in a circulative manner. Understanding the interaction between CLas and its insect vector is key for protecting citrus cultivation from HLB damage. Here, we used RNA sequencing and liquid chromatography-mass spectrometry (LC-MS) to analyze the transcriptome and metabolome of D. citri interacting with CLas. We identified 662 upregulated and 532 downregulated genes in CLas-infected insects. These genes were enriched in pathways involving carbohydrate metabolism, the insects’ immune system, and metabolism of cofactors and vitamins. We also detected 105 differential metabolites between CLas-infected and non-infected insects, including multiple nucleosides and lipid-related molecules. The integrated analysis revealed nine pathways—including those of the glycine, serine, threonine, and purine metabolism—affected by the differentially expressed genes from both groups. The network for these pathways was subsequently constructed. Our results thus provide insights regarding the cross-talk between the transcriptomic and metabolomic changes in D. citri in response to CLas infection, as well as information on the pathways and genes/metabolites related to the CLas–D. citri interaction.


Sign in / Sign up

Export Citation Format

Share Document