Electronic Structure of Aluminum Surfaces. Results from Empirical Tight-Binding Scattering Theory

1993 ◽  
Vol 179 (2) ◽  
pp. 399-410 ◽  
Author(s):  
K. Würde ◽  
A. Mazur ◽  
J. Pollmann
1997 ◽  
Vol 11 (20) ◽  
pp. 2405-2423 ◽  
Author(s):  
Kazumoto Iguchi

A tight-binding model is formulated for the calculation of the electronic structure of a double strand of deoxyribonucleic acid (DNA). The theory is applied to DNA with a particular structure such as the ladder and decorated ladder structures. It is found that there is a novel type of metal–insulator transitions due to the hopping anisotropy of the system. A metal-semimetal-semiconductor transition is found in the former and an effective semiconductor-metal transition at finite temperature in the latter, as the effect of base paring between two strands of DNA is increased. The latter mechanism may be responsible for explaining the Meade and Kayyem's recent observation.


2012 ◽  
Vol 24 (08) ◽  
pp. 1250020 ◽  
Author(s):  
JEAN BELLISSARD ◽  
HERMANN SCHULZ-BALDES

This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d ≥ 3, the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula, the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in the presence of embedded eigenvalues and threshold singularities.


Sign in / Sign up

Export Citation Format

Share Document