Application of NiOx thin films as p-type emitter layer in heterojunction solar cells

2016 ◽  
Vol 13 (10-12) ◽  
pp. 1006-1010 ◽  
Author(s):  
Francesca Menchini ◽  
Maria Luisa Grilli ◽  
Theodoros Dikonimos ◽  
Alberto Mittiga ◽  
Luca Serenelli ◽  
...  
2015 ◽  
Vol 1770 ◽  
pp. 7-12 ◽  
Author(s):  
Henriette A. Gatz ◽  
Yinghuan Kuang ◽  
Marcel A. Verheijen ◽  
Jatin K. Rath ◽  
Wilhelmus M.M. (Erwin) Kessels ◽  
...  

ABSTRACTSilicon heterojunction solar cells (SHJ) with thin intrinsic layers are well known for their high efficiencies. A promising way to further enhance their excellent characteristics is to enable more light to enter the crystalline silicon (c-Si) absorber of the cell while maintaining a simple cell configuration. Our approach is to replace the amorphous silicon (a-Si:H) emitter layer with a more transparent nanocrystalline silicon oxide (nc-SiOx:H) layer. In this work, we focus on optimizing the p-type nc-SiOx:H material properties, grown by radio frequency plasma enhanced chemical vapor deposition (rf PECVD), on an amorphous silicon layer.20 nm thick nanocrystalline layers were successfully grown on a 5 nm a-Si:H layer. The effect of different ratios of trimethylboron to silane gas flow rates on the material properties were investigated, yielding an optimized material with a conductivity in the lateral direction of 7.9×10-4 S/cm combined with a band gap of E04 = 2.33 eV. Despite its larger thickness as compared to a conventional window a-Si:H p-layer, the novel layer stack of a-Si:H(i)/nc-SiOx:H(p) shows significantly enhanced transmission compared to the stack with a conventional a-Si:H(p) emitter. Altogether, the chosen material exhibits promising characteristics for implementation in SHJ solar cells.


MRS Advances ◽  
2018 ◽  
Vol 3 (25) ◽  
pp. 1435-1442 ◽  
Author(s):  
Kazuma Takahashi ◽  
Yoshihiko Nakagawa ◽  
Kosuke O. Hara ◽  
Isao Takahashi ◽  
Yasuyoshi Kurokawa ◽  
...  

Abstract:A novel preparation method of B-doped p-type BaSi2 (p-BaSi2) is proposed to realize heterojunction crystalline Si solar cells with p-BaSi2. The method consists of thermal evaporation of BaSi2 on B-doped amorphous Si (a-Si). In this study, the effect of a-Si interlayers and substrate temperature during BaSi2 evaporation on the electrical characteristics and crystalline quality of the evaporated films were investigated. While no cracks were found in the BaSi2 films formed using hydrogenated a-Si deposited by plasma enhanced chemical vapor deposition (PECVD), the films formed with sputtered a-Si have cracks. In addition, BaSi2 films formed with a 600 °C substrate temperature using PECVD a-Si showed p-type characteristics. After a post-deposition anneal at 800 °C for 5 minutes, the film hole density was measured at 1.3×1019 cm-3 and boron was found to be uniformly distributed throughout the film. These results show that the proposed method using PECVD is promising to obtain p-BaSi2 thin films with high hole density for p-BaSi2/n-type crystalline Si heterojunction solar cells.


Nano Letters ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. 1925-1932 ◽  
Author(s):  
Xiaojie Xu ◽  
James Bullock ◽  
Laura T. Schelhas ◽  
Elias Z. Stutz ◽  
Jose J. Fonseca ◽  
...  

2006 ◽  
Vol 253 (4) ◽  
pp. 2123-2126 ◽  
Author(s):  
Swapnil B. Ambade ◽  
R.S. Mane ◽  
S.S. Kale ◽  
S.H. Sonawane ◽  
Arif V. Shaikh ◽  
...  

2003 ◽  
Vol 763 ◽  
Author(s):  
U. Rau ◽  
M. Turcu

AbstractNumerical simulations are used to investigate the role of the Cu-poor surface defect layer on Cu(In, Ga)Se2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In, Ga)Se2 heterojunction solar cells. We model the surface layer either as a material which is n-type doped, or as a material which is type-inverted due to Fermi-level pinning by donor-like defects at the interface with CdS. We further assume a band gap widening of this layer with respect to the Cu(In, Ga)Se2 bulk. This feature turns out to represent the key quality of the Cu(In, Ga)Se2 surface as it prevents recombination at the absorber/CdS buffer interface. Whether the type inversion results from n-type doping or from Fermi-level pinning is only of minor importance as long as the surface layer does not imply a too large number of excess defects in its bulk or at its interface with the normal absorber. With increasing number of those defects an n-type layer proofs to be less sensitive to material deterioration when compared to the type-inversion by Fermi-level pinning. For wide gap chalcopyrite solar cells the internal valence band offset between the surface layer and the chalcopyrite appears equally vital for the device efficiency. However, the unfavorable band-offsets of the ZnO/CdS/Cu(In, Ga)Se2 heterojunction limit the device efficiency because of the deterioration of the fill factor.


2014 ◽  
Vol 2 (30) ◽  
pp. 11857-11865 ◽  
Author(s):  
Masamichi Ikai ◽  
Yoshifumi Maegawa ◽  
Yasutomo Goto ◽  
Takao Tani ◽  
Shinji Inagaki

Mesoporous films containing 4,7-dithienyl-2,1,3-benzothiadiazole units in the frameworks were synthesized and demonstrated to function as a p-type layer for organic solar cells by filling an n-type PCBM in the mesopores.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 605-608 ◽  
Author(s):  
A. NUÑEZ ◽  
P. K. NAIR ◽  
M. T. S. NAIR

Following the model of DeVos and Pauwels (1981), we calculated the spectral factor of efficiencies (η1) for n +-p or n +-i-p heterojunctions that can be formed by different thin absorber materials (p-type or intrinsic(i)) with n +-type CdS thin films produced by conversion of chemically deposited CdS thin films by doping with Cl or In as reported before. The materials with η1 comparable to that of CuInSe 2 (Eg, 1.01 eV: 57%) are AgBiS 2 (Eg, 0.9 eV: 56%), Cu 2 SnS 3 (Eg, 0.91 eV: 57%), PbSnS 3 (Eg, 1.05 eV: 57%), PbSbS 4 (Eg, 1.13 eV: 56%).


Sign in / Sign up

Export Citation Format

Share Document