Control of lipid oxidation in ground meat by using whey protein isolate active biopolymers with lignin microparticles

Author(s):  
Raissa Alvarenga Carvalho Gomide ◽  
Ana Carolina Salgado Oliveira ◽  
Lorena Mendes Rodrigues ◽  
Lucas Baldo Luvizaro ◽  
Eduardo Mendes Ramos ◽  
...  





Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 593
Author(s):  
Jiaxin Chen ◽  
Jinhai Zhao ◽  
Baohua Kong ◽  
Qian Chen ◽  
Qian Liu ◽  
...  

The impact of typical primary or secondary lipid oxidation (LPO) products, selected as linoleic acid 13-hydroperoxide (13-HPODE) and malondialdehyde (MDA), on the structural modification of unadsorbed or adsorbed proteins in whey protein isolate (WPI)-stabilized oil-in-water (O/W) emulsions during storage up to 48 h at 37 °C in the dark was investigated. The results showed that either 13-HPODE and MDA could lead to structural modifications of unadsorbed or adsorbed proteins with a concentration-dependent manner and time relationship, respectively. Moreover, higher levels of MDA rendered a higher degree of oxidative modifications of WPI than 13-HPODE, indicated by the higher protein carbonyl contents and N’-formyl-L-kynurenine (NFK) and lower fluorescence intensity. Additionally, adsorbed proteins were more easily oxidized by LPO products than unadsorbed proteins. Overall, our results indicated that the formation of secondary LPO products and the protein position were crucial factors to increase the degree of oxidative modifications of WPI in O/W emulsion systems.



Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 705
Author(s):  
Yejun Zhong ◽  
Jincheng Zhao ◽  
Taotao Dai ◽  
Jiangping Ye ◽  
Jianyong Wu ◽  
...  

Protein–polyphenol interactions influence emulsifying properties in both directions. Puerarin (PUE) is an isoflavone that can promote the formation of heat-set gels with whey protein isolate (WPI) through hydrogen bonding. We examined whether PUE improves the emulsifying properties of WPI and the stabilities of the emulsions. We found that forming composites with PUE improves the emulsifying properties of WPI in a concentration-dependent manner. The optimal concentration is 0.5%, which is the highest PUE concentration that can be solubilized in water. The PUE not only decreased the droplet size of the emulsions, but also increased the surface charge by forming composites with the WPI. A 21 day storage test also showed that the maximum PUE concentration improved the emulsion stability the most. A PUE concentration of 0.5% improved the stability of the WPI emulsions against environmental stress, especially thermal treatment. Surface protein loads indicated more protein was adsorbed to the oil droplets, resulting in less interfacial WPI concentration due to an increase in specific surface areas. The use of PUE also decreased the interfacial tension of WPI at the oil–water interface. To conclude, PUE improves the emulsifying activity, storage, and environmental stability of WPI emulsions. This result might be related to the decreased interfacial tension of WPI–PUE composites.



2017 ◽  
Vol 104 ◽  
pp. 161-172 ◽  
Author(s):  
Markus Schmid ◽  
Sandra Pröls ◽  
Daniel M. Kainz ◽  
Felicia Hammann ◽  
Uwe Grupa


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1296
Author(s):  
Jéssica Thaís do Prado Silva ◽  
João Vitor Munari Benetti ◽  
Taís Téo de Barros Alexandrino ◽  
Odilio Benedito Garrido Assis ◽  
Jolet de Ruiter ◽  
...  

Whey protein isolate (WPI) can be used effectively to produce food-grade particles for stabilizing Pickering emulsions. In the present study, crosslinking of WPI microgels using organic acids (tannic and citric acids) is proposed to improve their functionality in emulsions containing roasted coffee oil. It was demonstrated that crosslinking of WPI by organic acids reduces the microgels’ size from ≈1850 nm to 185 nm and increases their contact angle compared to conventional WPI microgels, achieving values as high as 60°. This led to the higher physical stability of Pickering emulsions: the higher contact angle and smaller particle size of acid-crosslinked microgels contribute to the formation of a thinner layer of particles on the oil/water (O/W) interface that is located mostly in the water phase, thus forming an effective barrier against droplet coalescence. Particularly, emulsions stabilized by tannic acid-crosslinked WPI microgels presented neither creaming nor sedimentation up to 7 days of storage. The present work demonstrates that the functionality of these crosslinked WPI microgels can be tweaked considerably, which is an asset compared to other food-grade particles that mostly need to be used as such to comply with the clean-label policy. In addition, the applications of these particles for an emulsion are much more diverse as of the starting material.



Author(s):  
Bruna Rage Baldone Lara ◽  
Paulo Sérgio de Andrade ◽  
Mario Guimarães Junior ◽  
Marali Vilela Dias ◽  
Lizzy Ayra Pereira Alcântara


2016 ◽  
Vol 56 ◽  
pp. 71-83 ◽  
Author(s):  
Eric Keven Silva ◽  
Viviane M. Azevedo ◽  
Rosiane L. Cunha ◽  
Miriam D. Hubinger ◽  
M. Angela A. Meireles


Sign in / Sign up

Export Citation Format

Share Document