scholarly journals Balance conditions in variational data assimilation for a high‐resolution forecast model

Author(s):  
Ross N. Bannister
2018 ◽  
Vol 146 (2) ◽  
pp. 447-465 ◽  
Author(s):  
Mark Buehner ◽  
Ping Du ◽  
Joël Bédard

Abstract Two types of approaches are commonly used for estimating the impact of arbitrary subsets of observations on short-range forecast error. The first was developed for variational data assimilation systems and requires the adjoint of the forecast model. Comparable approaches were developed for use with the ensemble Kalman filter and rely on ensembles of forecasts. In this study, a new approach for computing observation impact is proposed for ensemble–variational data assimilation (EnVar). Like standard adjoint approaches, the adjoint of the data assimilation procedure is implemented through the iterative minimization of a modified cost function. However, like ensemble approaches, the adjoint of the forecast step is obtained by using an ensemble of forecasts. Numerical experiments were performed to compare the new approach with the standard adjoint approach in the context of operational deterministic NWP. Generally similar results are obtained with both approaches, especially when the new approach uses covariance localization that is horizontally advected between analysis and forecast times. However, large differences in estimated impacts are obtained for some surface observations. Vertical propagation of the observation impact is noticeably restricted with the new approach because of vertical covariance localization. The new approach is used to evaluate changes in observation impact as a result of the use of interchannel observation error correlations for radiance observations. The estimated observation impact in similarly configured global and regional prediction systems is also compared. Overall, the new approach should provide useful estimates of observation impact for data assimilation systems based on EnVar when an adjoint model is not available.


2011 ◽  
Vol 46 (1) ◽  
pp. 137-141 ◽  
Author(s):  
G.M. Baxter ◽  
S.L. Dance ◽  
A.S. Lawless ◽  
N.K. Nichols

2016 ◽  
Author(s):  
Colette Kerry ◽  
Brian Powell ◽  
Moninya Roughan ◽  
Peter Oke

Abstract. As with other western boundary currents globally, the East Australian Current (EAC) is inherently dynamic making it a challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the BlueLink ReANalysis (BRAN3). For the data assimilation we use an Incremental Strong-Constraint 4-Dimensional Variational (IS4D-Var) scheme. This paper describes the data assimilative model configuration that achieves an optimised minimisation of the difference between the modelled solution and the observations to give a dynamically-consistent `best-estimate' of the ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It achieves mean spatially-averaged RMS residuals with the observations of 7 cm for SSH and 0.4 °C for SST over the assimilation period. The time-mean RMS residual for subsurface temperature measured by Argo floats is a maximum of 1 °C between water depths of 100–300 m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf moorings are well represented in the reanalysis with complex correlations between 0.8–1 for all observations in the upper 500 m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity estimates with complex correlations with observed velocities of 0.8–1 across the radar footprint. Comparison with independent (non-assimilated) shipboard CTD cast observations shows a marked improvement in the representation of the subsurface ocean in the reanalysis, with the RMS residual in potential density reduced to about half of the residual with the free-running model in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed variables to unobserved regions as the assimilation system uses the model dynamics to determine covariance, such that the ocean state better fits and is in balance with the observations. This is the first study to generate a reanalysis of the region at such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to study EAC dynamics, observation impact in state-estimation and as forcing for a variety of downscaling studies.


2016 ◽  
Author(s):  
Felipe Hernández ◽  
Xu Liang

Abstract. There are two main frameworks for the estimation of initial states in geophysical models for real-time and forecasting applications: sequential data assimilation and variational data assimilation. However, modern high-resolution models offer challenges, both in terms of indeterminacy and computational requirements, which render most traditional methods insufficient. In this article we introduce a hybrid algorithm called OPTIMISTS which combines advantageous features from both of these data assimilation perspectives. These features are integrated with a multi-objective approach for selecting ensemble members to create a probabilistic estimate of the state variables, which promotes the reduction of observational errors as well as the maintenance of the dynamic consistency of states. Additionally, we propose simplified computations as alternatives aimed at reducing memory and processor requirements. OPTIMISTS was tested on two models of real watersheds, one with over 1,000 variables and the second with over 30,000, on two distributed hydrologic modelling engines: VIC and the DHSVM. Our tests, consisting of assimilating streamflow observations, allowed determining which features of the traditional approaches lead to more accurate forecasts while at the same time making an efficient use of the available computational resources. The results also demonstrated the benefits of the coupled probabilistic/multi-objective approach, which proved instrumental in reducing the harmful effects of overfitting – especially on the model with higher dimensionality.


2018 ◽  
Vol 11 (1) ◽  
pp. 257-281 ◽  
Author(s):  
Piet Termonia ◽  
Claude Fischer ◽  
Eric Bazile ◽  
François Bouyssel ◽  
Radmila Brožková ◽  
...  

Abstract. The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Météo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here.


2015 ◽  
Vol 47 (5) ◽  
pp. 051401
Author(s):  
Yoichi Ishikawa ◽  
Teiji In ◽  
Satoshi Nakada ◽  
Kei Nishina ◽  
Hiromichi Igarashi ◽  
...  

2007 ◽  
Vol 135 (6) ◽  
pp. 2355-2364 ◽  
Author(s):  
Stéphane Laroche ◽  
Pierre Gauthier ◽  
Monique Tanguay ◽  
Simon Pellerin ◽  
Josée Morneau

Abstract A four-dimensional variational data assimilation (4DVAR) scheme has recently been implemented in the medium-range weather forecast system of the Meteorological Service of Canada (MSC). The new scheme is now composed of several additional and improved features as compared with the three-dimensional variational data assimilation (3DVAR): the first guess at the appropriate time from the full-resolution model trajectory is used to calculate the misfit to the observations; the tangent linear of the forecast model and its adjoint are employed to propagate the analysis increment and the gradient of the cost function over the 6-h assimilation window; a comprehensive set of simplified physical parameterizations is used during the final minimization process; and the number of frequently reported data, in particular satellite data, has substantially increased. The impact of these 4DVAR components on the forecast skill is reported in this article. This is achieved by comparing data assimilation configurations that range in complexity from the former 3DVAR with the implemented 4DVAR over a 1-month period. It is shown that the implementation of the tangent-linear model and its adjoint as well as the increased number of observations are the two features of the new 4DVAR that contribute the most to the forecast improvement. All the other components provide marginal though positive impact. 4DVAR does not improve the medium-range forecast of tropical storms in general and tends to amplify the existing, too early extratropical transition often observed in the MSC global forecast system with 3DVAR. It is shown that this recurrent problem is, however, more sensitive to the forecast model than the data assimilation scheme employed in this system. Finally, the impact of using a shorter cutoff time for the reception of observations, as the one used in the operational context for the 0000 and 1200 UTC forecasts, is more detrimental with 4DVAR. This result indicates that 4DVAR is more sensitive to observations at the end of the assimilation window than 3DVAR.


Sign in / Sign up

Export Citation Format

Share Document