observation impact
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 581-598
Author(s):  
Nancy L. Baker ◽  
Patricia M. Pauley ◽  
Rebecca E. Stone ◽  
Rolf H. Langland
Keyword(s):  

2021 ◽  
Vol 36 (4) ◽  
pp. e20
Author(s):  
Primary Investigators: Mary Doerner ◽  
Co-Investigators: Susan Seibert

Author(s):  
Hyun Mee Kim ◽  
Dae-Hui Kim

AbstractIn this study, the effect of boundary condition configurations in the regional Weather Research and Forecasting (WRF) model on the adjoint-based forecast sensitivity observation impact (FSOI) for 24 h forecast error reduction was evaluated. The FSOI has been used to diagnose the impact of observations on the forecast performance in several global and regional models. Different from the global model, in the regional model, the lateral boundaries affect forecasts and FSOI results. Several experiments with different lateral boundary conditions were conducted. The experimental period was from 1 to 14 June 2015. With or without data assimilation, the larger the buffer size in lateral boundary conditions, the smaller the forecast error. The nonlinear and linear forecast error reduction (i.e., observation impact) decreased as the buffer size increased, implying larger impact of lateral boundaries and smaller observation impact on the forecast error. In all experiments, in terms of observation types (variables), upper-air radiosonde observations (brightness temperature) exhibited the greatest observation impact. The ranking of observation impacts was consistent for observation types and variables among experiments with a constraint in the response function at the upper boundary. The fractions of beneficial observations were approximately 60%, and did not considerably vary depending on the boundary conditions specified when calculating the FSOI in the regional modeling framework.


2020 ◽  
Vol 37 (8) ◽  
pp. 1333-1352
Author(s):  
Brett T. Hoover ◽  
Chris S. Velden

AbstractThe adjoint-derived observation impact method is used as a diagnostic to derive the impact of assimilated observations on a metric representing the forecast intensity of a tropical cyclone (TC). Storm-centered composites of observation impact and the model background state are computed across 6-hourly analysis/forecast cycles to compute the composite observation impact throughout the life cycle of Hurricane Joaquin (2015) to evaluate the impact of in situ wind and temperature observations in the upper and lower troposphere, as well as the impact of brightness temperature and precipitable water observations, on intensity forecasts with forecast lengths from 12 to 48 h. The compositing across analysis/forecast cycles allows for the exploration of consistent relationships between the synoptic-scale state of the initial conditions and the impact of observations that are interpreted as flow-dependent interactions between model background bias and correction by assimilated observations on the TC intensity forecast. The track of Hurricane Matthew (2016), with an extended period of time near the coasts of Florida, Georgia, and the Carolinas, allows for a comparison of the impact of aircraft reconnaissance observations with the impact of nearby overland rawinsonde observations available within the same radius of the TC.


2020 ◽  
Author(s):  
Tobias Sebastian Finn ◽  
Gernot Geppert ◽  
Felix Ament

<p>The temporal and spatial development of the atmospheric boundary layer is coupled to soil conditions via latent and sensible heat flux. Information about soil conditions is following encoded in atmospheric screen-level observations. To infer the soil moisture, these observations are usually assimilated with a Simplified Extended Kalman Filter (SEKF). This data assimilation technique is simplified in comparison to Ensemble Kalman Filters (EnKF), which are often used for data assimilation in the atmosphere. To make full use of the interface between atmosphere and land, we want to use strongly-coupled data assimilation with a unified system. We will present which problems have to be solved within an EnKF framework to use it as unified data assimilation system. We initialized an observing system simulation experiment with the TerrSysMP system, where a limited area model for the atmosphere is coupled with the Community Land Model. Here, we assimilate the two-metre temperature with an EnKF to update the soil moisture for a dry time period. We use initial soil moisture and soil temperature perturbations as only method to create an ensemble.</p><p>We show a positive observation impact during daytime. The analysis and forecast are further improved compared to assimilation with a SEKF. During daytime, the atmosphere and soil are strongly coupled, while they are almost uncoupled during night-time. Following, we have a slightly negative observation impact during night-time. This negative impact is induced by sampling errors of the ensemble. The negative impact is further amplified in the transition time between night and day. We can attribute this amplification to horizontal heterogeneities and multiplicative ensemble inflation in soil. We can therefore say that the inflation is wrongly tuned for the soil during night-time, while it works for the atmosphere and during daytime. We hypothesize that these problems during night-time can be avoided by using additional models, like a time-dependent localization radius and inflation factor.</p>


2020 ◽  
Vol 148 (3) ◽  
pp. 907-928
Author(s):  
Pascal Marquet ◽  
Jean-François Mahfouf ◽  
Daniel Holdaway

Abstract This study presents a new formulation for the norms and scalar products used in tangent linear or adjoint models to determine forecast errors and sensitivity to observations and to calculate singular vectors. The new norm is derived from the concept of moist-air available enthalpy, which is one of the availability functions referred to as exergy in general thermodynamics. It is shown that the sum of the kinetic energy and the moist-air available enthalpy can be used to define a new moist-air squared norm that is quadratic in 1) wind components, 2) temperature, 3) surface pressure, and 4) water vapor content. Preliminary numerical applications are performed to show that the new weighting factors for temperature and water vapor are significantly different from those used in observation impact studies, and are in better agreement with observed analysis increments. These numerical applications confirm that the weighting factors for water vapor and temperature exhibit a large increase with height (by several orders of magnitude) and a minimum in the midtroposphere, respectively.


2020 ◽  
Vol 148 (2) ◽  
pp. 763-782 ◽  
Author(s):  
Rebecca E. Stone ◽  
Carolyn A. Reynolds ◽  
James D. Doyle ◽  
Rolf H. Langland ◽  
Nancy L. Baker ◽  
...  

Abstract Atmospheric rivers, often associated with impactful weather along the west coast of North America, can be a challenge to forecast even on short time scales. This is attributed, at least in part, to the scarcity of eastern Pacific in situ observations. We examine the impact of assimilating dropsonde observations collected during the Atmospheric River (AR) Reconnaissance 2018 field program on the Navy Global Environmental Model (NAVGEM) analyses and forecasts. We compare NAVGEM’s representation of the ARs to the observations, and examine whether the observation–background difference statistics are similar to the observation error variance specified in the data assimilation system. Forecast sensitivity observation impact is determined for each dropsonde variable, and compared to the impacts of the North American radiosonde network. We find that the reconnaissance soundings have significant beneficial impact, with per observation impact more than double that of the North American radiosonde network. Temperature and wind observations have larger total and per observation impact than moisture observations. In our experiment, the 24-h global forecast error reduction from the reconnaissance soundings can be comparable to the reduction from the North American radiosonde network for the field program dates that include at least two flights.


Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1801-1814 ◽  
Author(s):  
Liuqian Yu ◽  
Katja Fennel ◽  
Bin Wang ◽  
Arnaud Laurent ◽  
Keith R. Thompson ◽  
...  

Abstract. Assessments of ocean data assimilation (DA) systems and observing system design experiments typically rely on identical or nonidentical twin experiments. The identical twin approach has been recognized as yielding biased impact assessments in atmospheric predictions, but these shortcomings are not sufficiently appreciated for oceanic DA applications. Here we present the first direct comparison of the nonidentical and identical twin approaches in an ocean DA application. We assess the assimilation impact for both approaches in a DA system for the Gulf of Mexico that uses the ensemble Kalman filter. Our comparisons show that, despite a reasonable error growth rate in both approaches, the identical twin produces a biased skill assessment, overestimating the improvement from assimilating sea surface height and sea surface temperature observations while underestimating the value of assimilating temperature and salinity profiles. Such biases can lead to an undervaluation of some observing assets (in this case profilers) and thus a misguided distribution of observing system investments.


Sign in / Sign up

Export Citation Format

Share Document