On the association of the diurnal variation of electric potential gradient in fine weather with the distribution of thunderstorms over the globe

2007 ◽  
Vol 55 (229) ◽  
pp. 1-18 ◽  
Author(s):  
F. J. W. WHIPPLE
1937 ◽  
Vol 15a (8) ◽  
pp. 119-148 ◽  
Author(s):  
D. C. Rose

The atmospheric potential gradient was observed continuously at the National Research Laboratories at Ottawa for a year ending December 1, 1935, and at a country station about nine miles northwest of Ottawa, for four months ending November 1, 1936. The country station was set up on a site as free as possible from man-made pollution of the atmosphere. The records were studied from two points of view, the diurnal variation and disturbances in the normal fine weather value of the potential gradient. The results indicate that the diurnal variation is similar to that of other similarly situated stations. The study of disturbances in the potential gradient shows that all disturbances can be correlated with local meteorological conditions. The disturbances were for the most part associated with the stormy conditions usual at the passage of a front. The effect of city pollution on potential gradient records is clearly shown.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 307-311 ◽  
Author(s):  
S. E. Smirnov ◽  
Y. V. Marapulets

Abstract. The effect was observed as a sharp fall of the electric potential gradient from +80 V m−1 down to –21 V m−1. After that the field returned to its normal level according to the formula of the capacitor discharge with 17 s characteristic time. Simultaneously, the response of the acoustic emission of surface rocks in the range of frequencies between 6.5 kHz and 11 kHz was evaluated.


Sign in / Sign up

Export Citation Format

Share Document