Three-dimensional quasi-geostrophic contour dynamics, with an application to stratospheric vortex dynamics

1994 ◽  
Vol 120 (519) ◽  
pp. 1267-1297 ◽  
Author(s):  
D. G. Dritschel ◽  
R. Saravanan
2019 ◽  
Vol 880 ◽  
pp. 723-742 ◽  
Author(s):  
Luke R. Smith ◽  
Yong Su Jung ◽  
James D. Baeder ◽  
Anya R. Jones

The physics of a rotary wing in forward flight are highly complex, particularly when flow separation is involved. The purpose of this work is to assess the role of three-dimensional (3-D) vortex dynamics, with a focus on Coriolis forces, in the evolution of vortices in the reverse flow region of a rotating wing. High-fidelity numerical simulations were performed to recreate the flow about a representative rotating wing in forward flight. A vorticity transport analysis was performed to quantify and compare the magnitudes of 2-D flow physics, vortex tilting and Coriolis effects in the resulting flow fields. Three-dimensional vortex dynamics was found to have a very small impact on the growth and behaviour of vortices in the reverse flow region; in fact, the rate of vortex growth was successfully modelled using a simple 2-D vortex method. The small role of 3-D physics was attributed to the Coriolis and vortex tilting terms being approximately equal and opposite to one another. This ultimately lead to vortex behaviour that more closely resembled a surging wing as opposed to a conventional rotating wing, a feature unique to the reverse flow region.


Author(s):  
Christopher C. Green ◽  
Jonathan S. Marshall

Green's function for the Laplace–Beltrami operator on the surface of a three-dimensional ring torus is constructed. An integral ingredient of our approach is the stereographic projection of the torus surface onto a planar annulus. Our representation for Green's function is written in terms of the Schottky–Klein prime function associated with the annulus and the dilogarithm function. We also consider an application of our results to vortex dynamics on the surface of a torus.


2000 ◽  
Vol 62 (1) ◽  
Author(s):  
B. M. Caradoc-Davies ◽  
R. J. Ballagh ◽  
P. B. Blakie

1997 ◽  
Vol 11 (18) ◽  
pp. 2141-2155 ◽  
Author(s):  
N.-C. Yeh ◽  
U. Kriplani ◽  
W. Jiang ◽  
J. Kumar ◽  
H. F. Fong ◽  
...  

The effects of static disorder on the vortex dynamics of type-II superconductors are investigated by comparing the high-frequency vortex response of superconducting amorphous Mo3Si (a- Mo3Si ) films with that of the high-temperature superconductors. We find that for a- Mo3Si films in the three-dimensional limit, the microwave vortex response near the second-order vortex-solid to vortex-liquid glass transitions is consistent with vortex critical relaxation, in contrast to the diffusion vortex dynamics in high-temperature superconductors at the same frequencies. The observation of microwave vortex critical dynamics in a- Mo3Si is attributed to the extremely disordered nature of the amorphous superconductors, which results in a much shorter-range vortex correlation and therefore a faster critical relaxation.


Author(s):  
M. Mohammad Beigi Kasvaei ◽  
M. H. Kazeminezhad ◽  
A. Yeganeh-Bakhtiary

Three-dimensional numerical simulation of regular waves passing over cylindrical monopile has been conducted to investigate the vortex dynamics. To do so the rectangular wave flume and monopile is modeled on a solver, available in the open-source CFD toolkit OpenFOAM®. The solver applied RANS equations with VOF method for tracking free surface. Model validation has been done by comparison numerical results with the experimental ones and admissible agreement has been seen. Computations have been done for three cases with different pile diameters consequently for different Keulegan-Carpenter numbers (KC). The vorticity field around the pile was investigated as well as vortices by means of Q criterion. It was seen that by increasing KC number, horseshoe vortices will be formed and vortex shedding will be happened. Moreover, Bed shear stress around the pile has been extracted and it has been seen that, the bed shear stress is influenced by KC value which result of existence of horseshoe vortices and vortex shedding.


Author(s):  
Aarthi Sekaran ◽  
Noushin Amini

Abstract The application of radially lobed nozzles has seen renewed challenges in the recent past with their roles in combustion chambers and passive flow control. The free jet flow from such nozzles has been studied for different flow conditions and compared to jets from round nozzles, verifying their improved mixing abilities. The precise mixing mechanisms of these nozzles are, however, not entirely understood and yet to be analyzed for typical jet parameters and excitation modes. While past studies have proposed the presence of spanwise Kelvin-Helmholtz instability modes, the roll-up frequencies of the structures indicate more than one primary structure, which is challenging to resolve experimentally. The present study carries out three dimensional CFD simulations of the flow from a tubular lobed nozzle to identify instability mechanisms and vortex dynamics that lead to enhanced mixing. We initially validate the model against existing hotwire and LDV data following which a range of Large Eddy Simulations (LES) are carried out. The free jet flow was at a Reynolds number of around 5 × 104, based on the effective jet diameter. Initial results are compared to that of a round nozzle to demonstrate changes in mixing mechanisms. The lobed nozzle simulations confirmed the presence of K-H-like modes and their evolution. We also track the formation and the transport of coherent structures from the tubular part of the nozzle to the core flow, to reveal the evolution of the large-scale streamwise modes at the crests and corresponding horseshoe-like structures at the troughs.


1985 ◽  
pp. 34-45
Author(s):  
Hermann Viets ◽  
Richard J. Bethke ◽  
David Bougine

Author(s):  
Aarthi Sekaran ◽  
Noushin Amini

Abstract The application of radially lobed nozzles has seen renewed challenges in the recent past with their roles in combustion chambers and passive flow control. The free jet flow from such nozzles has been studied for different flow conditions and compared to jets from round nozzles, verifying their improved mixing abilities. The precise mixing mechanisms of these nozzles are, however, not entirely understood and yet to be analyzed for typical jet parameters and excitation modes. The present study carries out three-dimensional Large Eddy Simulations (LES) of the flow from a tubular radially lobed nozzle to identify instability mechanisms and vortex dynamics that lead to enhanced mixing. The flow is studied at two Reynolds numbers of around 6000 and 75,000, based on the effective jet diameter. The low Reynolds number jet is compared to that from a round nozzle and experimental data to demonstrate changes in mixing mechanisms. The present simulations confirmed the presence of K-H-like modes and their evolution. The analysis also confirms the evolution of three distinct types of structures - the large-scale streamwise modes at the lobe crests, corresponding K-H structures at the troughs and an additional set of structures generated from the lobe walls. The higher Reynolds number simulations indicate changes in the mechanics with a subdued role of the lobe walls.


Sign in / Sign up

Export Citation Format

Share Document