free surface model
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 3)

Author(s):  
Daniele Chiappini

The aim of this work is to present a lattice Boltzmann (LB) model devoted to dealing with non-Newtonian free surface flow. The combination of LB solver with a free-surface model allows dealing with multiphase flows where the density ratio in between the two considered phases is so high that the lighter phase can be neglected. For this particular set of multiphase models, the interface between the two phases is numerically reconstructed and transported via a diffusion equation. Moreover, the application of a Carreau approach for viscosity modelling allows the introduction of effects related to shear stress on fluid flow evolution. Two different non-Newtonian silicon-like materials have been considered here, namely the polystyrene and acrylonitrile butadiene styrene. Here, the author, after the mandatory model validation with a reference configuration, presents some applications of injection moulding for two different test-cases: the former is the injection in a labyrinth-like gasket, whereas the latter is the injection in a porous media. This article is part of the theme issue ‘Fluid dynamics, soft matter and complex systems: recent results and new methods’.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1212
Author(s):  
Daniele Chiappini

In this study, the capabilities of a coupled KBC-free surface model to deal with fluid solid interactions with the slamming of rigid obstacles in a calm water tank were analyzed. The results were firstly validated with experimental and numerical data available in literature and, thereafter, some additional analyses was carried out to understand the main parameters’ influence on slamming coefficient. The effect of grid resolution and Reynolds number were firstly considered to choose the proper grid and to present the weak impact of such a non-dimensional number on process evolution. Hence, the influence of Froude number on fluid-dynamics quantities was pointed out considering vertical impacts of both cylindrical, as in the references, and ellipsoidal obstacles. Different formulations of slamming coefficient were used and compared. Results are pretty encouraging and they confirm the effectiveness of lattice Boltzmann model to deal with such a problem. This leaves the door open to additional improvements addressed to the study of free buoyant bodies immersed in a fluid domain.


2019 ◽  
Vol 52 (5) ◽  
pp. 1054-1060
Author(s):  
Takayuki Kumada ◽  
Kazuhiro Akutsu ◽  
Kazuki Ohishi ◽  
Toshiaki Morikawa ◽  
Yukihiko Kawamura ◽  
...  

The spin-contrast-variation neutron reflectometry technique was developed for the structural analysis of multilayer films. Polarized-neutron reflectivity curves of film samples vary as a function of their proton polarization (P H). The P H-dependent reflectivity curves of a polystyrene monolayer film were precisely reproduced using a common set of structural parameters and the P H-dependent neutron scattering length density of polystyrene. This result ensures that these curves are not deformed by inhomogeneous P H but can be used for structural analysis. Unpolarized reflectivity curves of poly(styrene-block-isoprene) films were reproduced using a flat free-surface model but P H-dependent polarized reflectivity curves were not. The global fit of the P H-dependent multiple reflectivity curves revealed that holes with a depth corresponding to one period of the periodic lamellae of microphase-separated polystyrene and polyisoprene domains were produced on the surface of the films, which agrees with the microscopic results. In this manner, the spin-contrast-variation neutron reflectometry technique determines the structure of multiple surfaces and interfaces in a film sample while excluding the incorrect structure that accidentally accounts for a single unpolarized reflectivity curve only.


2019 ◽  
Vol 49 (3) ◽  
pp. 889-892 ◽  
Author(s):  
Yasushi Fujiwara ◽  
Yutaka Yoshikawa ◽  
Yoshimasa Matsumura

AbstractFujiwara et al. explicitly simulated Langmuir circulations using a wave-resolving simulation (WRS) technique and found that the residual wave effect on vorticity was well represented by the vortex force of the Craik–Leibovich (CL) equation, at least in the simulated situation. In response to the simulation results, Mellor has proposed a view that ubiquitous applicability of the CL formulation is still questionable and that the three-dimensional radiation stress (3DRS) formulation that he has derived encompasses both of the vortex force effect and an effect that is lower order in terms of wave steepness. Here, these opinions are discussed in terms of the approximations used in the wave-averaged formulations. The asymptotic expansion of the Eulerian-averaged momentum equation allows the separate discussion of two different wave effects: pressure correction and torque. It is argued that the approximation adopted in Mellor’s 3DRS formulation is presumably not accurate enough to properly parameterize the wave torque effect, and possible approaches to examine its performance are proposed. We agree with the view that the applicability of the CL formulation needs further investigation. WRS will be a helpful tool for this purpose.


2019 ◽  
Vol 49 (3) ◽  
pp. 885-888 ◽  
Author(s):  
George Mellor

AbstractThe results of the subject paper are reviewed wherein credible Langmuir cells are produced by a numerical solution of the primitive fluid dynamic equations with a free surface. Whereas it is a major achievement, the claim that the same results support the general application of the so-called vortex force equations is challenged.


Author(s):  
Roman Ivanovitch Savonov

This work presents the simulation of the internal flow in a swirl atomizer. The geometry of the atomizer is calculated by analytical equations used in engineering. The numerical simulation of the two-phase flow is performed by using two equations k-ε turbulence model. The fluids are presented as two-fluid homogeneous model. The interface between two phases is calculated by free surface model. The distribution fields of the axial and tangential velocities, pressures and air core are obtained. The aim of this work is to compare the results obtained by numerical simulation with ones obtained analytically. Also, to study the internal fluids flow inside the atomizer.


Author(s):  
M. Mohammad Beigi Kasvaei ◽  
M. H. Kazeminezhad ◽  
A. Yeganeh-Bakhtiary

Three-dimensional numerical simulation of regular waves passing over cylindrical monopile has been conducted to investigate the vortex dynamics. To do so the rectangular wave flume and monopile is modeled on a solver, available in the open-source CFD toolkit OpenFOAM®. The solver applied RANS equations with VOF method for tracking free surface. Model validation has been done by comparison numerical results with the experimental ones and admissible agreement has been seen. Computations have been done for three cases with different pile diameters consequently for different Keulegan-Carpenter numbers (KC). The vorticity field around the pile was investigated as well as vortices by means of Q criterion. It was seen that by increasing KC number, horseshoe vortices will be formed and vortex shedding will be happened. Moreover, Bed shear stress around the pile has been extracted and it has been seen that, the bed shear stress is influenced by KC value which result of existence of horseshoe vortices and vortex shedding.


Sign in / Sign up

Export Citation Format

Share Document