On the Brillouin-zone integrations in second-order many-body perturbation calculations for extended systems of one-dimensional periodicity

2009 ◽  
Vol 109 (13) ◽  
pp. 2953-2959 ◽  
Author(s):  
Tomomi Shimazaki ◽  
So Hirata

2010 ◽  
Vol 133 (3) ◽  
pp. 034106 ◽  
Author(s):  
Yu-ya Ohnishi ◽  
So Hirata


2021 ◽  
Author(s):  
Elisabeth Keller ◽  
Theodoros Tsatsoulis ◽  
Karsten Reuter ◽  
Johannes T. Margraf

While many-body wavefunction theory has long been established as a powerful framework for highly accurate molecular quantum chemistry, these methods have only fairly recently been applied to extended systems in a significant scale. This is due to the high computational cost of such calculations, requiring efficient implementations and ample computing resources. To further aggravate this, second-order Møller-Plesset perturbation theory (MP2) (the most cost effective wavefuntion method) is known to diverge or fail for some prototypical condensed matter systems like the homogeneous electron gas (HEG). In this paper, we explore how the issues of MP2 for metallic and strongly correlated systems can be ameliorated through regularization. To this end, two regularized second-order methods (including a new, size-extensive Brillioun-Wigner approach) are applied to the HEG, the one-dimensional Hubbard model and the graphene-water interaction energy. We find that regularization consistently leads to improvements over the MP2 baseline and that different regularizers are appropriate for metallic and strongly correlated systems, respectively.



1996 ◽  
Vol 104 (21) ◽  
pp. 8553-8565 ◽  
Author(s):  
Jun‐Qiang Sun ◽  
Rodney J. Bartlett


2009 ◽  
Vol 80 (8) ◽  
Author(s):  
So Hirata ◽  
Tomomi Shimazaki


2019 ◽  
Author(s):  
Brian Nguyen ◽  
Guo P Chen ◽  
Matthew M. Agee ◽  
Asbjörn M. Burow ◽  
Matthew Tang ◽  
...  

Prompted by recent reports of large errors in noncovalent interaction (NI) energies obtained from many-body perturbation theory (MBPT), we compare the performance of second-order Møller–Plesset MBPT (MP2), spin-scaled MP2, dispersion-corrected semilocal density functional approximations (DFA), and the post-Kohn–Sham random phase approximation (RPA) for predicting binding energies of supramolecular complexes contained in the S66, L7, and S30L benchmarks. All binding energies are extrapolated to the basis set limit, corrected for basis set superposition errors, and compared to reference results of the domain-based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) or better quality. Our results confirm that MP2 severely overestimates binding energies of large complexes, producing relative errors of over 100% for several benchmark compounds. RPA relative errors consistently range between 5-10%, significantly less than reported previously using smaller basis sets, whereas spin-scaled MP2 methods show limitations similar to MP2, albeit less pronounced, and empirically dispersion-corrected DFAs perform almost as well as RPA. Regression analysis reveals a systematic increase of relative MP2 binding energy errors with the system size at a rate of approximately 1‰ per valence electron, whereas the RPA and dispersion-corrected DFA relative errors are virtually independent of the system size. These observations are corroborated by a comparison of computed rotational constants of organic molecules to gas-phase spectroscopy data contained in the ROT34 benchmark. To analyze these results, an asymptotic adiabatic connection symmetry-adapted perturbation theory (AC-SAPT) is developed which uses monomers at full coupling whose ground-state density is constrained to the ground-state density of the complex. Using the fluctuation–dissipation theorem, we obtain a nonperturbative “screened second-order” expression for the dispersion energy in terms of monomer quantities which is exact for non-overlapping subsystems and free of induction terms; a first-order RPA-like approximation to the Hartree, exchange, and correlation kernel recovers the macroscopic Lifshitz limit. The AC-SAPT expansion of the interaction energy is obtained from Taylor expansion of the coupling strength integrand. Explicit expressions for the convergence radius of the AC-SAPT series are derived within RPA and MBPT and numerically evaluated. Whereas the AC-SAPT expansion is always convergent for nondegenerate monomers when RPA is used, it is found to spuriously diverge for second-order MBPT, except for the smallest and least polarizable monomers. The divergence of the AC-SAPT series within MBPT is numerically confirmed within RPA; prior numerical results on the convergence of the SAPT expansion for MBPT methods are revisited and support this conclusion once sufficiently high orders are included. The cause of the failure of MBPT methods for NIs of large systems is missing or incomplete “electrodynamic” screening of the Coulomb interaction due to induced particle–hole pairs between electrons in different monomers, leaving the effective interaction too strong for AC-SAPT to converge. Hence, MBPT cannot be considered reliable for quantitative predictions of NIs, even in moderately polarizable molecules with a few tens of atoms. The failure to accurately account for electrodynamic polarization makes MBPT qualitatively unsuitable for applications such as NIs of nanostructures, macromolecules, and soft materials; more robust non-perturbative approaches such as RPA or coupled cluster methods should be used instead whenever possible.<br>



Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1016
Author(s):  
Camelia Liliana Moldovan ◽  
Radu Păltănea

The paper presents a multidimensional generalization of the Schoenberg operators of higher order. The new operators are powerful tools that can be used for approximation processes in many fields of applied sciences. The construction of these operators uses a symmetry regarding the domain of definition. The degree of approximation by sequences of such operators is given in terms of the first and the second order moduli of continuity. Extending certain results obtained by Marsden in the one-dimensional case, the property of preservation of monotonicity and convexity is proved.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Naoto Shiraishi ◽  
Keiji Matsumoto

AbstractThe investigation of thermalization in isolated quantum many-body systems has a long history, dating back to the time of developing statistical mechanics. Most quantum many-body systems in nature are considered to thermalize, while some never achieve thermal equilibrium. The central problem is to clarify whether a given system thermalizes, which has been addressed previously, but not resolved. Here, we show that this problem is undecidable. The resulting undecidability even applies when the system is restricted to one-dimensional shift-invariant systems with nearest-neighbour interaction, and the initial state is a fixed product state. We construct a family of Hamiltonians encoding dynamics of a reversible universal Turing machine, where the fate of a relaxation process changes considerably depending on whether the Turing machine halts. Our result indicates that there is no general theorem, algorithm, or systematic procedure determining the presence or absence of thermalization in any given Hamiltonian.



2009 ◽  
Author(s):  
Azusa Inoue ◽  
Shin-ichiro Inoue ◽  
Shiyoshi Yokoyama ◽  
Keisuke Kojima ◽  
Kei Yasui ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document