Optimal linear combination of sensors and actuators to enforce an interior conic open‐loop system

2019 ◽  
Vol 29 (17) ◽  
pp. 6288-6310
Author(s):  
Ryan James Caverly
Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


2015 ◽  
Vol 1 (1) ◽  
pp. 54-57 ◽  
Author(s):  
Gustavo Lenis ◽  
Felix Conz ◽  
Olaf Dössel

AbstractECG derived respiration (EDR) is a technique applied to estimate the respiration signal using only the electrocardiogram (ECG). Different approaches have been proposed in the past on how respiration could be gained from the ECG. However, in many applications only one of them is used while the others are not considered at all. In this paper, we propose a new algorithm for the optimal linear combination of different EDR methods in order to create a more accurate estimation. Using two well known databases, it was statistically shown that an optimally chosen fixed set of coefficients for the linear combination delivers a better estimation than each of the methods used solely.


Author(s):  
G. R. Yantio Njankeu ◽  
J.-Y. Paris ◽  
J. Denape ◽  
L. Pichon ◽  
J.-P. Rivie`re

Titanium alloys are well known to present poor sliding behaviour and high wear values. Various coatings and treatments have been tested to prevent such an occurrence under fretting conditions at high frequency of displacement (100 Hz). An original test apparatus, using an open-loop system instead of a classical imposed displacement simulator, has been performed to directly display the phenomenon of seizure, defined as the stopping of the relative motion between the contacting elements. A classification of the tested coatings has been proposed on the basis of their capacity to maintain full or partial sliding conditions, to present low wear rates and to prevent seizure.


2018 ◽  
Vol 175 ◽  
pp. 05029
Author(s):  
Evan Berkowitz ◽  
Amy Nicholson ◽  
Chia Cheng Chang ◽  
Enrico Rinaldi ◽  
M.A. Clark ◽  
...  

There are many outstanding problems in nuclear physics which require input and guidance from lattice QCD calculations of few baryons systems. However, these calculations suffer from an exponentially bad signal-to-noise problem which has prevented a controlled extrapolation to the physical point. The variational method has been applied very successfully to two-meson systems, allowing for the extraction of the two-meson states very early in Euclidean time through the use of improved single hadron operators. The sheer numerical cost of using the same techniques in two-baryon systems has so far been prohibitive. We present an alternate strategy which offers some of the same advantages as the variational method while being significantly less numerically expensive. We first use the Matrix Prony method to form an optimal linear combination of single baryon interpolating fields generated from the same source and different sink interpolating fields. Very early in Euclidean time this optimal linear combination is numerically free of excited state contamination, so we coin it a calm baryon. This calm baryon operator is then used in the construction of the two-baryon correlation functions.To test this method, we perform calculations on the WM/JLab iso-clover gauge configurations at the SU(3) flavor symmetric point with mπ~ 800 MeV — the same configurations we have previously used for the calculation of two-nucleon correlation functions. We observe the calm baryon significantly removes the excited state contamination from the two-nucleon correlation function to as early a time as the single-nucleon is improved, provided non-local (displaced nucleon) sources are used. For the local two-nucleon correlation function (where both nucleons are created from the same space-time location) there is still improvement, but there is significant excited state contamination in the region the single calm baryon displays no excited state contamination.


1994 ◽  
Vol 116 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Jenq-Tzong H. Chan

A method to synthesize decoupled multivariable control system from a batch of plant test data is introduced. The method is applicable when the system has more inputs than outputs and is open-loop stable. An advantage of this method is that explicit identification of an open-loop system model is not required for controller synthesis.


Sign in / Sign up

Export Citation Format

Share Document