Design of a proportional integral derivative‐like continuous sliding mode controller

Author(s):  
Ulises Pérez‐Ventura ◽  
Jesús Mendoza‐Avila ◽  
Leonid Fridman
2021 ◽  
pp. 107754632098245
Author(s):  
Seyede Zeynab Mirrezapour ◽  
Assef Zare ◽  
Majid Hallaji

This study presents a new fractional sliding mode controller based on nonlinear fractional-order proportional integral derivative controllers to synchronize fractional-order chaotic systems with uncertainties and affected by disturbance. According to the proposed control approach, a new fractional order control law is presented which ensures robust and stable synchronization of chaotic systems in the presence of uncertainties of the master and slave systems and bounded disturbance according to Lyapunov theorem. The proposed sliding mode controller is used to synchronize two non-smooth chaotic jerk systems affected by disturbance and uncertainty. Simulation results verify effectiveness and robustness of the proposed control law.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668427 ◽  
Author(s):  
Te-Jen Su ◽  
Shih-Ming Wang ◽  
Tsung-Ying Li ◽  
Sung-Tsun Shih ◽  
Van-Manh Hoang

The objective of this article is to optimize parameters of a hybrid sliding mode controller based on fireworks algorithm for a nonlinear inverted pendulum system. The proposed controller is a combination of two modified types of the classical sliding mode controller, namely, baseline sliding mode controller and fast output sampling discrete sliding mode controller. The simulation process is carried out with MATLAB/Simulink. The results are compared with a published hybrid method using proportional–integral–derivative and linear quadratic regulator controllers. The simulation results show a better performance of the proposed controller.


Author(s):  
Cheng Cheng ◽  
Songyong Liu ◽  
Hongzhuang Wu

This paper proposes an observer-based sliding mode control method for electro-hydraulic servo systems with uncertain nonlinearities, external disturbances, and immeasurable states. The mathematical model is built based on the principle of electro-hydraulic servo systems. Owing to its highly robustness and finite time properties, the sliding mode observer is chosen and designed to estimate the velocity and the equivalent pressure online only using the position feedback. Then, in order to tackle the chattering problem of conventional sliding mode control and increase the control accuracy, a novel second-order sliding mode control scheme is proposed based on the fractional-order proportional–integral–derivative sliding surface and the state observer. The stability of the overall system is proved by Lyapunov theory. Finally, the detailed simulations are conducted, which include the comparative analysis of control performance with other methods and the study of observation performance.


Sign in / Sign up

Export Citation Format

Share Document